Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

50 Years of Anderson Localization

50 Years of Anderson Localization Author Elihu Abrahams
ISBN-10 9789814299077
Release 2010
Pages 597
Download Link Click Here

This unique volume celebrates the five decades of the impact of Anderson localization on modern physics. In addition to the historical perspective on its origin, it provides a comprehensive description of the experimental and theoretical aspects of Anderson localization.



PWA90 A Lifetime of Emergence

PWA90  A Lifetime of Emergence Author Premi Chandra
ISBN-10 9789814733649
Release 2015-12-21
Pages 252
Download Link Click Here

' In a remarkable career spanning more than six decades, Philip W Anderson has made many fundamental contributions to physics. As codified in his oft-quoted phrase "More is Different", Anderson has been the most forceful and persuasive proponent of the radical, but now ubiquitous, viewpoint of emergent phenomena: truly fundamental concepts that can and do emerge from studies of Nature at each layer of complexity or energy scale. Anderson''s ideas have also extended deeply into other areas of physics, including the Anderson–Higgs mechanism and the dynamics of pulsars. PWA90: A Lifetime of Emergence is a volume of original scientific essays and personal reminiscences of Philip W Anderson by experts in the field, that were presented as part of "PWA90: Emergent Frontiers of Condensed Matter" meeting held at Princeton in December 2013 to highlight Anderson''s contributions to physics. Contents: Recollections of a Graduate Student (Khandker A Muttalib)P W Anderson Seen Through the Eyes of a Student (Clare C Yu)Random Walks in Anderson''s Garden: A Journey from Cuprates to Cooper Pair Insulators and Beyond (G Baskaran)Some Reminiscences on Anderson Localization (Elihu Abrahams)Anderson and Condensed Matter Physics (T V Ramakrishnan)Superfluidity and Symmetry Breaking — An Anderson Living Legacy (Frank Wilczek)Phil Anderson and Gauge Symmetry Breaking (Edward Witten)A Short History of the Theory and Experimental Discovery of Superfluidity in 3He (W F Brinkman)Superconductivity in a Terrestrial Liquid: What Would It Be Like? (A J Leggett)40 Years of Quantum Spin Liquid: A Tale of Emergence from Frustration (Patrick A Lee)High Tc Superconductivity and RVB (Mohit Randeria)Paired Insulators and High Temperature Superconductors (T H Geballe and S A Kivelson)Special Properties of High Tc Cuprates, Radically Different from Other Transition Metal Oxides (T M Rice)From Bacteria to Artificial Cells, the Problem of Self-Reproduction (Albert Libchaber)Spin Glasses and Frustration (Scott Kirkpatrick)Frustration and Fluctuations in Systems with Quenched Disorder (D L Stein)Phil Anderson''s Magnetic Ideas in Science (Piers Coleman) Readership: Students, academics and researchers in condensed matter. Keywords:P W Anderson;Superfluidity;Anderson–Higgs Mechanism;Pulsars;Condensed Matter Physics;Anderson;Localization;High-Temperature Superconductors;Spin Classes'



Anderson Localization

Anderson Localization Author Y. Nagaoka
ISBN-10 9783642818417
Release 2012-12-06
Pages 228
Download Link Click Here

This volume contains the proceedings of the Fourth Taniguchi International Symposium on the Theory of Condensed Matter, which was held at Senkari Semi nar House of Kwansei Gakuin Universi~y in Sanda-shi, Japan, during the period of 3-8 November 1981. The topic of the symposium was "Anderson rocalization," one of the most fundamental problems in condensed-matter physics. Since Anderson's classic paper was published in 1958, much theoretical and experimental effort has been performed to study the problem of electron localization in a random potential. Quite recently, Abrahams, Anderson, Licciardello, and Ramakrishnan proposed a scaling theory of the Anderson lo calization which made it possible to perform microscopic investigations. Rapid progress has followed and we are now getting a coherent picture of the behavior of electrons in disordered systems. When we organized the symposium, we asked Dr. Anderson to participate in it and to give a review talk on theoretical aspects of the problem. Though he kindly accepted our invitation, he could not come due to a sudden illness. A review talk was given by Professor Thouless who kindly accepted our request to take the place of Dr. Anderson. Fortunately, Dr. Anderson has since re covered from his illness.



Multi scale Analysis for Random Quantum Systems with Interaction

Multi scale Analysis for Random Quantum Systems with Interaction Author Victor Chulaevsky
ISBN-10 9781461482260
Release 2013-09-20
Pages 238
Download Link Click Here

The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd. This book includes the following cutting-edge features: an introduction to the state-of-the-art single-particle localization theory an extensive discussion of relevant technical aspects of the localization theory a thorough comparison of the multi-particle model with its single-particle counterpart a self-contained rigorous derivation of both spectral and dynamical localization in the multi-particle tight-binding Anderson model. Required mathematical background for the book includes a knowledge of functional calculus, spectral theory (essentially reduced to the case of finite matrices) and basic probability theory. This is an excellent text for a year-long graduate course or seminar in mathematical physics. It also can serve as a standard reference for specialists.



Advanced Solid State Physics

Advanced Solid State Physics Author Philip Phillips
ISBN-10 9780521194907
Release 2012-03-01
Pages 402
Download Link Click Here

Introduces students to the key research topics within modern solid state physics with the minimum of mathematics.



Mathematical Physics of Quantum Wires and Devices

Mathematical Physics of Quantum Wires and Devices Author N.E. Hurt
ISBN-10 0792362888
Release 2000-05-31
Pages 302
Download Link Click Here

This is the first book to present a comprehensive treatment of the mathematical physics of quantum wires and devices. The focus is on the recent results in the area of the spectral theory of bent and deformed quantum wires, simple quantum devices, Anderson localization, the quantum Hall effect and graphical models for quantum wire systems. The Selberg trace formula for finite volume graphical models is reviewed. Examples and relationships to recent work on acoustic and fluid flow, trapped states and spectral resonances, quantum chaos, random matrix theory, spectral statistics, point interactions, photonic crystals, Landau models, quantum transistors, edge states and metal-insulator transitions are developed. Problems related to modeling open quantum devices are discussed. The research of Exner and co-workers in quantum wires, Stollmann, Figotin, Bellissard et al. in the area of Anderson localization and the quantum Hall effect, and Bird, Ferry, Berggren and others in the area of quantum devices and their modeling is surveyed. The work on finite volume graphical models is interconnected to recent work on Ramanujan graphs and diagrams, the Phillips-Sarnak conjectures, L-functions and scattering theory. Audience: This book will be of use to physicists, mathematicians and engineers interested in quantum wires, quantum devices and related mesoscopic systems.



Random Operators

Random Operators Author Michael Aizenman
ISBN-10 9781470419134
Release 2015-12-11
Pages 326
Download Link Click Here

This book provides an introduction to the mathematical theory of disorder effects on quantum spectra and dynamics. Topics covered range from the basic theory of spectra and dynamics of self-adjoint operators through Anderson localization--presented here via the fractional moment method, up to recent results on resonant delocalization. The subject's multifaceted presentation is organized into seventeen chapters, each focused on either a specific mathematical topic or on a demonstration of the theory's relevance to physics, e.g., its implications for the quantum Hall effect. The mathematical chapters include general relations of quantum spectra and dynamics, ergodicity and its implications, methods for establishing spectral and dynamical localization regimes, applications and properties of the Green function, its relation to the eigenfunction correlator, fractional moments of Herglotz-Pick functions, the phase diagram for tree graph operators, resonant delocalization, the spectral statistics conjecture, and related results. The text incorporates notes from courses that were presented at the authors' respective institutions and attended by graduate students and postdoctoral researchers.



More is Different

More is Different Author N. Phuan Ong
ISBN-10 0691088667
Release 2001
Pages 345
Download Link Click Here

This book presents articles written by leading experts surveying several major subfields in Condensed Matter Physics and related sciences. The articles are based on invited talks presented at a recent conference honoring Nobel laureate Philip W. Anderson of Princeton University, who coined the phrase "More is different" while formulating his contention that all fields of physics, indeed all of science, involve equally fundamental insights. The articles introduce and survey current research in areas that have been close to Anderson's interests. Together, they illustrate both the deep impact that Anderson has had in this multifaceted field during the past half century and the progress spawned by his insights. The contributors cover numerous topics under the umbrellas of superconductivity, superfluidity, magnetism, electron localization, strongly interacting electronic systems, heavy fermions, and disorder and frustration in glass and spin-glass systems. They also describe interdisciplinary areas such as the science of olfaction and color vision, the screening of macroions in electrolytes, scaling and renormalization in cosmology, forest fires and the spread of measles, and the investigation of "NP-complete" problems in computer science. The articles are authored by Philip W. Anderson, Per Bak and Kan Chen, G. Baskaran, Juan Carlos Campuzano, Paul Chaikin, John Hopfield, Bernhard Keimer, Scott Kirkpatrick and Bart Selman, Gabriel Kotliar, Patrick Lee, Yoshiteru Maeno, Marc Mezard, Douglas Osheroff et al., H. R. Ott, L. Pietronero et al., T. V. Ramakrishnan, A. Ramirez, Myriam Sarachik, T. Senthil and Matthew P. A. Fisher, B. I. Shklovskii et al., and F. Steglich et al.



Introduction to Quantum Graphs

Introduction to Quantum Graphs Author Gregory Berkolaiko
ISBN-10 9780821892114
Release 2013
Pages 270
Download Link Click Here

A ``quantum graph'' is a graph considered as a one-dimensional complex and equipped with a differential operator (``Hamiltonian''). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., ``meso-'' or ``nano-scale'') system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.



Scattering and Localization of Classical Waves in Random Media

Scattering and Localization of Classical Waves in Random Media Author Ping Sheng
ISBN-10 9971505398
Release 1990
Pages 635
Download Link Click Here

The past decade has witnessed breakthroughs in the understanding of the wave localization phenomena and its implications for wave multiple scattering in inhomogeneous media. This book brings together review articles written by noted researchers in this field in a tutorial manner so as to give the readers a coherent picture of its status. It would be valuable both as an up-to-date reference for active researchers as well as a readable source for students looking to gain an understanding of the latest results.



Photonic Band Gaps and Localization

Photonic Band Gaps and Localization Author C.M. Soukoulis
ISBN-10 9781489916068
Release 2013-11-27
Pages 520
Download Link Click Here

This volume contains the papers presented at the NATO Advanced Research Workshop on Localization and Propagation o[ Classical Waves in Random and Periodic Media held in Aghia Pelaghia, Heraklion, Crete, May 26- 30, 1992. The workshop's goal was to bring together theorists and experimentalists from two related areas, localization and photonic band gaps, to highlight their common interests. The objectives of the workshop were (i) to assess the state of-the-art in experimental and theoretical studies of structures exhibiting classical wave band gaps and/or localization, (ii) to discuss how such structures can be fabricated to improve technologies in different areas of physics and engineering, and (iii) to identify problems and set goals for further research. Studies of the propagation of electromagnetic (EM) waves in periodic and/or disordered dielectric structures (photonic band gap structures) have been and continue to be a dynamic area of research. Anderson localization of EM waves in disordered dielectric structures is of fundamental interest where the strong ei-ei interaction efFects entering the eIectron-localization are absent.



Spectral Theory and Mathematical Physics

Spectral Theory and Mathematical Physics Author Marius Mantoiu
ISBN-10 9783319299921
Release 2016-06-30
Pages 255
Download Link Click Here

The present volume contains the Proceedings of the International Conference on Spectral Theory and Mathematical Physics held in Santiago de Chile in November 2014. Main topics are: Ergodic Quantum Hamiltonians, Magnetic Schrödinger Operators, Quantum Field Theory, Quantum Integrable Systems, Scattering Theory, Semiclassical and Microlocal Analysis, Spectral Shift Function and Quantum Resonances. The book presents survey articles as well as original research papers on these topics. It will be of interest to researchers and graduate students in Mathematics and Mathematical Physics.



Localization Algorithms and Strategies for Wireless Sensor Networks Monitoring and Surveillance Techniques for Target Tracking

Localization Algorithms and Strategies for Wireless Sensor Networks  Monitoring and Surveillance Techniques for Target Tracking Author Mao, Guoqiang
ISBN-10 9781605663975
Release 2009-05-31
Pages 526
Download Link Click Here

Wireless localization techniques are an area that has attracted interest from both industry and academia, with self-localization capability providing a highly desirable characteristic of wireless sensor networks. Localization Algorithms and Strategies for Wireless Sensor Networks encompasses the significant and fast growing area of wireless localization techniques. This book provides comprehensive and up-to-date coverage of topics and fundamental theories underpinning measurement techniques and localization algorithms. A useful compilation for academicians, researchers, and practitioners, this Premier Reference Source contains relevant references and the latest studies emerging out of the wireless sensor network field.



Radiation Effects in Solids

Radiation Effects in Solids Author Kurt E. Sickafus
ISBN-10 9781402052958
Release 2007-05-22
Pages 592
Download Link Click Here

This is a comprehensive overview of fundamental principles and relevant technical issues associated with the behavior of solids exposed to high-energy radiation. These issues are important to the development of materials for existing fission reactors or future fusion and advanced reactors for energy production; to the development of electronic devices such as high-energy detectors; and to the development of novel materials for electronic and photonic applications.



Anderson Localization and Its Ramifications

Anderson Localization and Its Ramifications Author Tobias Brandes
ISBN-10 3540407855
Release 2003-09-11
Pages 315
Download Link Click Here

The phenomenon of localization of the electronic wave function in a random medium can be regarded as the key manifestation of quantum coherence in a condensed matter system. As one of the most remarkable phenomena in condensed matter physics discovered in the 20th century, the localization problem is an indispensable part of the theory of the quantum Hall effects and rivals superconductivity in its significance as a manifestation of quantum coherence at a macroscopic scale. The present volume, written by some of the leading experts in the field, is intended to highlight some of the recent progress in the field of localization, with particular emphasis on the effect of interactions on quantum coherence. The chapters are written in textbook style and should serve as a reliable and thorough introduction for advanced students or researchers already working in the field of mesoscopic physics.



Nanoscale Phase Separation and Colossal Magnetoresistance

Nanoscale Phase Separation and Colossal Magnetoresistance Author Elbio Dagotto
ISBN-10 9783662052440
Release 2013-03-14
Pages 459
Download Link Click Here

The study of the spontaneous formation of nanostructures in single crystals of several compounds is now a major area of research in strongly correlated electrons. These structures appear to originate in the competition of phases. The book addresses nanoscale phase separation, focusing on the manganese oxides known as manganites that have the colossal magnetoresistance (CMR) effect of potential relevance for device applications. It is argued that the nanostructures are at the heart of the CMR phenomenon. The book contains updated information on manganite research directed to experts, both theorists and experimentalists. However, graduate students or postdocs will find considerable introductory material, including elements of computational physics.



Fluctuations and Localization in Mesoscopic Electron Systems

Fluctuations and Localization in Mesoscopic Electron Systems Author Martin Janssen
ISBN-10 9812798927
Release 2001
Pages 205
Download Link Click Here

The quantum phenomena of tunneling and interference show up not only in the microscopic world of atoms and molecules, but also in cold materials of the real world, such as metals and semiconductors. Though not fully macroscopic, such mesoscopic systems contain a huge number of particles, and the holistic nature of quantum mechanics becomes evident already in simple electronic measurements. The measured quantity fluctuates as a function of applied fields in an unpredictable, yet reproducible way. Despite this fingerprint character of fluctuations, their statistical properties are universal, i.e. they are the same for a large class of different mesoscopic systems, having only very few parameters in common. Localization of electrons is a dramatic effect of destructive interference. As a consequence a metal can become an insulator while reaching mesoscopic scales. Based on elementary quantum and statistical physics, this text introduces the theory of mesoscopic electron systems. It focuses on universal characteristics of fluctuations and on the localization mechanism. General concepts and methods are stressed, such as scaling laws for distribution functions. Tools from condensed matter theory are used flexibly. Involved technical details are skipped so as to present a broad overview of the field, including topics like quantum dots, the quantum Hall effect and a number of the most recent developments. Contents: Experimental Facts; Basic Theoretical Models and Tools; Idealized Systems; Towards Realistic Systems; The Localization-Delocalization Transition. Readership: Condensed matter and theoretical physicists.