**Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.**

Author | John B. Conway | |

ISBN-10 | 9781475738285 | |

Release | 2013-04-17 | |

Pages | 406 | |

Download Link | Click Here |

Functional analysis has become a sufficiently large area of mathematics that it is possible to find two research mathematicians, both of whom call themselves functional analysts, who have great difficulty understanding the work of the other. The common thread is the existence of a linear space with a topology or two (or more). Here the paths diverge in the choice of how that topology is defined and in whether to study the geometry of the linear space, or the linear operators on the space, or both. In this book I have tried to follow the common thread rather than any special topic. I have included some topics that a few years ago might have been thought of as specialized but which impress me as interesting and basic. Near the end of this work I gave into my natural temptation and included some operator theory that, though basic for operator theory, might be considered specialized by some functional analysts. |

Author | John B. Conway | |

ISBN-10 | 0387972455 | |

Release | 1994-01-25 | |

Pages | 400 | |

Download Link | Click Here |

This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS |

Author | John B Conway | |

ISBN-10 | 1475738293 | |

Release | 2014-01-15 | |

Pages | 424 | |

Download Link | Click Here |

A Course in Functional Analysis has been writing in one form or another for most of life. You can find so many inspiration from A Course in Functional Analysis also informative, and entertaining. Click DOWNLOAD or Read Online button to get full A Course in Functional Analysis book for free. |

Author | Serge Lang | |

ISBN-10 | 9781461208976 | |

Release | 2012-12-06 | |

Pages | 580 | |

Download Link | Click Here |

This book is meant as a text for a first-year graduate course in analysis. In a sense, it covers the same topics as elementary calculus but treats them in a manner suitable for people who will be using it in further mathematical investigations. The organization avoids long chains of logical interdependence, so that chapters are mostly independent. This allows a course to omit material from some chapters without compromising the exposition of material from later chapters. |

Author | John B. Conway | |

ISBN-10 | 9780821820650 | |

Release | 2000 | |

Pages | 372 | |

Download Link | Click Here |

A new volume in the marquee series of the AMS, featuring broad mathematical topics written by some of the best and brightest that the mathematics field has to offer. All titles have attractive hardcovers and market-oriented prices. |

Author | Barbara MacCluer | |

ISBN-10 | 9780387855295 | |

Release | 2008-10-20 | |

Pages | 208 | |

Download Link | Click Here |

Functional analysis arose in the early twentieth century and gradually, conquering one stronghold after another, became a nearly universal mathematical doctrine, not merely a new area of mathematics, but a new mathematical world view. Its appearance was the inevitable consequence of the evolution of all of nineteenth-century mathematics, in particular classical analysis and mathematical physics. Its original basis was formed by Cantor’s theory of sets and linear algebra. Its existence answered the question of how to state general principles of a broadly interpreted analysis in a way suitable for the most diverse situations. A.M. Vershik ([45], p. 438). This text evolved from the content of a one semester introductory course in fu- tional analysis that I have taught a number of times since 1996 at the University of Virginia. My students have included ?rst and second year graduate students prep- ing for thesis work in analysis, algebra, or topology, graduate students in various departments in the School of Engineering and Applied Science, and several und- graduate mathematics or physics majors. After a ?rst draft of the manuscript was completed, it was also used for an independent reading course for several und- graduates preparing for graduate school. |

Author | John B. Conway | |

ISBN-10 | 9780821890837 | |

Release | 2012-10-03 | |

Pages | 367 | |

Download Link | Click Here |

This book covers topics appropriate for a first-year graduate course preparing students for the doctorate degree. The first half of the book presents the core of measure theory, including an introduction to the Fourier transform. This material can easily be covered in a semester. The second half of the book treats basic functional analysis and can also be covered in a semester. After the basics, it discusses linear transformations, duality, the elements of Banach algebras, and C*-algebras. It concludes with a characterization of the unitary equivalence classes of normal operators on a Hilbert space. The book is self-contained and only relies on a background in functions of a single variable and the elements of metric spaces. Following the author's belief that the best way to learn is to start with the particular and proceed to the more general, it contains numerous examples and exercises. |

Author | Francis Clarke | |

ISBN-10 | 9781447148203 | |

Release | 2013-02-06 | |

Pages | 591 | |

Download Link | Click Here |

Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields. |

Author | William Arveson | |

ISBN-10 | 9780387215181 | |

Release | 2006-04-18 | |

Pages | 142 | |

Download Link | Click Here |

This book presents the basic tools of modern analysis within the context of the fundamental problem of operator theory: to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces. The tools are diverse, and they provide the basis for more refined methods that allow one to approach problems that go well beyond the computation of spectra: the mathematical foundations of quantum physics, noncommutative K-theory, and the classification of simple C*-algebras being three areas of current research activity which require mastery of the material presented here. |

Author | A. Brown | |

ISBN-10 | 9781461299264 | |

Release | 2012-12-06 | |

Pages | 476 | |

Download Link | Click Here |

This book was written expressly to serve as a textbook for a one- or two-semester introductory graduate course in functional analysis. Its (soon to be published) companion volume, Operators on Hilbert Space, is in tended to be used as a textbook for a subsequent course in operator theory. In writing these books we have naturally been concerned with the level of preparation of the potential reader, and, roughly speaking, we suppose him to be familiar with the approximate equivalent of a one-semester course in each of the following areas: linear algebra, general topology, complex analysis, and measure theory. Experience has taught us, however, that such a sequence of courses inevitably fails to treat certain topics that are important in the study of functional analysis and operator theory. For example, tensor products are frequently not discussed in a first course in linear algebra. Likewise for the topics of convergence of nets and the Baire category theorem in a course in topology, and the connections between measure and topology in a course in measure theory. For this reason we have chosen to devote the first ten chapters of this volume (entitled Part I) to topics of a preliminary nature. In other words, Part I summarizes in considerable detail what a student should (and eventually must) know in order to study functional analysis and operator theory successfully. |

Author | Karen Saxe | |

ISBN-10 | 9781475736878 | |

Release | 2013-04-17 | |

Pages | 197 | |

Download Link | Click Here |

The unifying approach of functional analysis is to view functions as points in abstract vector space and the differential and integral operators as linear transformations on these spaces. The author's goal is to present the basics of functional analysis in a way that makes them comprehensible to a student who has completed courses in linear algebra and real analysis, and to develop the topics in their historical contexts. |

Author | Yuli Eidelman | |

ISBN-10 | 9780821836460 | |

Release | 2004 | |

Pages | 322 | |

Download Link | Click Here |

The goal of this textbook is to provide an introduction to the methods and language of functional analysis, including Hilbert spaces, Fredholm theory for compact operators, and spectral theory of self-adjoint operators. It also presents the basic theorems and methods of abstract functional analysis and a few applications of these methods to Banach algebras and the theory of unbounded self-adjoint operators. The text corresponds to material for two semester courses (Part I and Part II, respectively), and it is as self-contained as possible. The only prerequisites for the first part are minimal amounts of linear algebra and calculus. However, for the second course (Part II), it is useful to have some knowledge of topology and measure theory. Each chapter is followed by numerous exercises, whose solutions are given at the end of the book. |

Author | Robert J. Zimmer | |

ISBN-10 | 0226983382 | |

Release | 1990-01-15 | |

Pages | 157 | |

Download Link | Click Here |

Functional analysis is a broad mathematical area with strong connections to many domains within mathematics and physics. This book, based on a first-year graduate course taught by Robert J. Zimmer at the University of Chicago, is a complete, concise presentation of fundamental ideas and theorems of functional analysis. It introduces essential notions and results from many areas of mathematics to which functional analysis makes important contributions, and it demonstrates the unity of perspective and technique made possible by the functional analytic approach. Zimmer provides an introductory chapter summarizing measure theory and the elementary theory of Banach and Hilbert spaces, followed by a discussion of various examples of topological vector spaces, seminorms defining them, and natural classes of linear operators. He then presents basic results for a wide range of topics: convexity and fixed point theorems, compact operators, compact groups and their representations, spectral theory of bounded operators, ergodic theory, commutative C*-algebras, Fourier transforms, Sobolev embedding theorems, distributions, and elliptic differential operators. In treating all of these topics, Zimmer's emphasis is not on the development of all related machinery or on encyclopedic coverage but rather on the direct, complete presentation of central theorems and the structural framework and examples needed to understand them. Sets of exercises are included at the end of each chapter. For graduate students and researchers in mathematics who have mastered elementary analysis, this book is an entrée and reference to the full range of theory and applications in which functional analysis plays a part. For physics students and researchers interested in these topics, the lectures supply a thorough mathematical grounding. |

Author | Gert K. Pedersen | |

ISBN-10 | 9781461210078 | |

Release | 2012-12-06 | |

Pages | 280 | |

Download Link | Click Here |

Graduate students in mathematics, who want to travel light, will find this book invaluable; impatient young researchers in other fields will enjoy it as an instant reference to the highlights of modern analysis. Starting with general topology, it moves on to normed and seminormed linear spaces. From there it gives an introduction to the general theory of operators on Hilbert space, followed by a detailed exposition of the various forms the spectral theorem may take; from Gelfand theory, via spectral measures, to maximal commutative von Neumann algebras. The book concludes with two supplementary chapters: a concise account of unbounded operators and their spectral theory, and a complete course in measure and integration theory from an advanced point of view. |

Author | S. David Promislow | |

ISBN-10 | 0470146192 | |

Release | 2008-04-11 | |

Pages | 307 | |

Download Link | Click Here |

A concise introduction to the major concepts of functional analysis Requiring only a preliminary knowledge of elementary linear algebra and real analysis, A First Course in Functional Analysis provides an introduction to the basic principles and practical applications of functional analysis. Key concepts are illustrated in a straightforward manner, which facilitates a complete and fundamental understanding of the topic. This book is based on the author's own class-tested material and uses clear language to explain the major concepts of functional analysis, including Banach spaces, Hilbert spaces, topological vector spaces, as well as bounded linear functionals and operators. As opposed to simply presenting the proofs, the author outlines the logic behind the steps, demonstrates the development of arguments, and discusses how the concepts are connected to one another. Each chapter concludes with exercises ranging in difficulty, giving readers the opportunity to reinforce their comprehension of the discussed methods. An appendix provides a thorough introduction to measure and integration theory, and additional appendices address the background material on topics such as Zorn's lemma, the Stone-Weierstrass theorem, Tychonoff's theorem on product spaces, and the upper and lower limit points of sequences. References to various applications of functional analysis are also included throughout the book. A First Course in Functional Analysis is an ideal text for upper-undergraduate and graduate-level courses in pure and applied mathematics, statistics, and engineering. It also serves as a valuable reference for practitioners across various disciplines, including the physical sciences, economics, and finance, who would like to expand their knowledge of functional analysis. |

Author | Martin Davis | |

ISBN-10 | 9780486315812 | |

Release | 2013-05-27 | |

Pages | 128 | |

Download Link | Click Here |

Designed for undergraduate mathematics majors, this self-contained exposition of Gelfand's proof of Wiener's theorem explores set theoretic preliminaries, normed linear spaces and algebras, functions on Banach spaces, homomorphisms on normed linear spaces, and more. 1966 edition. |

Author | Manfred Einsiedler | |

ISBN-10 | 9783319585406 | |

Release | 2017-11-21 | |

Pages | 614 | |

Download Link | Click Here |

This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics. |