**Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.**

Author | Sudhir R. Ghorpade | |

ISBN-10 | 9781441916211 | |

Release | 2010-03-20 | |

Pages | 475 | |

Download Link | Click Here |

This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike. |

Author | Balmohan V. Limaye | |

ISBN-10 | 9789811009723 | |

Release | 2016-06-18 | |

Pages | 254 | |

Download Link | Click Here |

This book provides a concise and meticulous introduction to functional analysis. Since the topic draws heavily on the interplay between the algebraic structure of a linear space and the distance structure of a metric space, functional analysis is increasingly gaining the attention of not only mathematicians but also scientists and engineers. The purpose of the text is to present the basic aspects of functional analysis to this varied audience, keeping in mind the considerations of applicability. A novelty of this book is the inclusion of a result by Zabreiko, which states that every countably subadditive seminorm on a Banach space is continuous. Several major theorems in functional analysis are easy consequences of this result. The entire book can be used as a textbook for an introductory course in functional analysis without having to make any specific selection from the topics presented here. Basic notions in the setting of a metric space are defined in terms of sequences. These include total boundedness, compactness, continuity and uniform continuity. Offering concise and to-the-point treatment of each topic in the framework of a normed space and of an inner product space, the book represents a valuable resource for advanced undergraduate students in mathematics, and will also appeal to graduate students and faculty in the natural sciences and engineering. The book is accessible to anyone who is familiar with linear algebra and real analysis. |

Author | Jerry Shurman | |

ISBN-10 | 9783319493145 | |

Release | 2017-01-01 | |

Pages | 507 | |

Download Link | Click Here |

The graceful role of analysis in underpinning calculus is often lost to their separation in the curriculum. This book entwines the two subjects, providing a conceptual approach to multivariable calculus closely supported by the structure and reasoning of analysis. The setting is Euclidean space, with the material on differentiation culminating in the inverse and implicit function theorems, and the material on integration culminating in the general fundamental theorem of integral calculus. More in-depth than most calculus books but less technical than a typical analysis introduction, Calculus and Analysis in Euclidean Space offers a rich blend of content to students outside the traditional mathematics major, while also providing transitional preparation for those who will continue on in the subject. The writing in this book aims to convey the intent of ideas early in discussion. The narrative proceeds through figures, formulas, and text, guiding the reader to do mathematics resourcefully by marshaling the skills of geometric intuition (the visual cortex being quickly instinctive) algebraic manipulation (symbol-patterns being precise and robust) incisive use of natural language (slogans that encapsulate central ideas enabling a large-scale grasp of the subject). Thinking in these ways renders mathematics coherent, inevitable, and fluid. The prerequisite is single-variable calculus, including familiarity with the foundational theorems and some experience with proofs. |

Author | Serge Lang | |

ISBN-10 | 9781441985323 | |

Release | 2012-09-17 | |

Pages | 731 | |

Download Link | Click Here |

This fifth edition of Lang's book covers all the topics traditionally taught in the first-year calculus sequence. Divided into five parts, each section of A FIRST COURSE IN CALCULUS contains examples and applications relating to the topic covered. In addition, the rear of the book contains detailed solutions to a large number of the exercises, allowing them to be used as worked-out examples -- one of the main improvements over previous editions. |

Author | Serge Lang | |

ISBN-10 | 9781475718010 | |

Release | 2013-03-14 | |

Pages | 546 | |

Download Link | Click Here |

The present volume is a text designed for a first course in analysis. Although it is logically self-contained, it presupposes the mathematical maturity acquired by students who will ordinarily have had two years of calculus. When used in this context, most of the first part can be omitted, or reviewed extremely rapidly, or left to the students to read by themselves. The course can proceed immediately into Part Two after covering Chapters o and 1. However, the techniques of Part One are precisely those which are not emphasized in elementary calculus courses, since they are regarded as too sophisticated. The context of a third-year course is the first time that they are given proper emphasis, and thus it is important that Part One be thoroughly mastered. Emphasis has shifted from computational aspects of calculus to theoretical aspects: proofs for theorems concerning continuous 2 functions; sketching curves like x e-X, x log x, xlix which are usually regarded as too difficult for the more elementary courses; and other similar matters. |

Author | James J. Callahan | |

ISBN-10 | 144197332X | |

Release | 2010-09-09 | |

Pages | 526 | |

Download Link | Click Here |

With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study. |

Author | Paul J. Sally, Jr. | |

ISBN-10 | 9780821891414 | |

Release | 2013 | |

Pages | 362 | |

Download Link | Click Here |

This is a textbook for a course in Honors Analysis (for freshman/sophomore undergraduates) or Real Analysis (for junior/senior undergraduates) or Analysis-I (beginning graduates). It is intended for students who completed a course in ``AP Calculus'', possibly followed by a routine course in multivariable calculus and a computational course in linear algebra. There are three features that distinguish this book from many other books of a similar nature and which are important for the use of this book as a text. The first, and most important, feature is the collection of exercises. These are spread throughout the chapters and should be regarded as an essential component of the student's learning. Some of these exercises comprise a routine follow-up to the material, while others challenge the student's understanding more deeply. The second feature is the set of independent projects presented at the end of each chapter. These projects supplement the content studied in their respective chapters. They can be used to expand the student's knowledge and understanding or as an opportunity to conduct a seminar in Inquiry Based Learning in which the students present the material to their class. The third really important feature is a series of challenge problems that increase in impossibility as the chapters progress. |

Author | Charles Chapman Pugh | |

ISBN-10 | 9783319177717 | |

Release | 2015-07-29 | |

Pages | 478 | |

Download Link | Click Here |

Based on an honors course taught by the author at UC Berkeley, this introduction to undergraduate real analysis gives a different emphasis by stressing the importance of pictures and hard problems. Topics include: a natural construction of the real numbers, four-dimensional visualization, basic point-set topology, function spaces, multivariable calculus via differential forms (leading to a simple proof of the Brouwer Fixed Point Theorem), and a pictorial treatment of Lebesgue theory. Over 150 detailed illustrations elucidate abstract concepts and salient points in proofs. The exposition is informal and relaxed, with many helpful asides, examples, some jokes, and occasional comments from mathematicians, such as Littlewood, Dieudonné, and Osserman. This book thus succeeds in being more comprehensive, more comprehensible, and more enjoyable, than standard introductions to analysis. New to the second edition of Real Mathematical Analysis is a presentation of Lebesgue integration done almost entirely using the undergraph approach of Burkill. Payoffs include: concise picture proofs of the Monotone and Dominated Convergence Theorems, a one-line/one-picture proof of Fubini's theorem from Cavalieri’s Principle, and, in many cases, the ability to see an integral result from measure theory. The presentation includes Vitali’s Covering Lemma, density points — which are rarely treated in books at this level — and the almost everywhere differentiability of monotone functions. Several new exercises now join a collection of over 500 exercises that pose interesting challenges and introduce special topics to the student keen on mastering this beautiful subject. |

Author | Joseph L. Taylor | |

ISBN-10 | 9780821889848 | |

Release | 2012 | |

Pages | 398 | |

Download Link | Click Here |

Foundations of Analysis is an excellent new text for undergraduate students in real analysis. More than other texts in the subject, it is clear, concise and to the point, without extra bells and whistles. It also has many good exercises that help illustrate the material. My students were very satisfied with it. --Nat Smale, University of Utah I have taught our Foundations of Analysis course (based on Joe Taylor.s book) several times recently, and have enjoyed doing so. The book is well-written, clear, and concise, and supplies the students with very good introductory discussions of the various topics, correct and well-thought-out proofs, and appropriate, helpful examples. The end-of-chapter problems supplement the body of the text very well (and range nicely from simple exercises to really challenging problems). --Robert Brooks, University of Utah An excellent text for students whose future will include contact with mathematical analysis, whatever their discipline might be. It is content-comprehensive and pedagogically sound. There are exercises adequate to guarantee thorough grounding in the basic facts, and problems to initiate thought and gain experience in proofs and counterexamples. Moreover, the text takes the reader near enough to the frontier of analysis at the calculus level that the teacher can challenge the students with questions that are at the ragged edge of research for undergraduate students. I like it a lot. --Don Tucker, University of Utah My students appreciate the concise style of the book and the many helpful examples. --W.M. McGovern, University of Washington Analysis plays a crucial role in the undergraduate curriculum. Building upon the familiar notions of calculus, analysis introduces the depth and rigor characteristic of higher mathematics courses. Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. The list of topics covered is rather standard, although the treatment of some of them is not. The several variable material makes full use of the power of linear algebra, particularly in the treatment of the differential of a function as the best affine approximation to the function at a given point. The text includes a review of several linear algebra topics in preparation for this material. In the final chapter, vector calculus is presented from a modern point of view, using differential forms to give a unified treatment of the major theorems relating derivatives and integrals: Green's, Gauss's, and Stokes's Theorems. At appropriate points, abstract metric spaces, topological spaces, inner product spaces, and normed linear spaces are introduced, but only as asides. That is, the course is grounded in the concrete world of Euclidean space, but the students are made aware that there are more exotic worlds in which the concepts they are learning may be studied. |

Author | Serge Lang | |

ISBN-10 | 0387953272 | |

Release | 2001-11-29 | |

Pages | 260 | |

Download Link | Click Here |

This is a reprint of A First Course in Calculus, which has gone through five editions since the early sixties. It covers all the topics traditionally taught in the first-year calculus sequence in a brief and elementary fashion. As sociological and educational conditions have evolved in various ways over the past four decades, it has been found worthwhile to make the original edition available again. The audience consists of those taking the first calculus course, in high school or college. The approach is the one which was successful decades ago, involving clarity, and adjusted to a time when the students¿ background was not as substantial as it might be. We are now back to those times, so it¿s time to start over again. There are no epsilon-deltas, but this does not imply that the book is not rigorous. Lang learned this attitude from Emil Artin, around 1950. |

Author | Wendell H Fleming | |

ISBN-10 | 9781468494617 | |

Release | 2012-12-06 | |

Pages | 412 | |

Download Link | Click Here |

This new edition, like the first, presents a thorough introduction to differential and integral calculus, including the integration of differential forms on manifolds. However, an additional chapter on elementary topology makes the book more complete as an advanced calculus text, and sections have been added introducing physical applications in thermodynamics, fluid dynamics, and classical rigid body mechanics. |

Author | David Bachman | |

ISBN-10 | 9780817683047 | |

Release | 2012-02-02 | |

Pages | 156 | |

Download Link | Click Here |

This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems. |

Author | Judith Cederberg | |

ISBN-10 | 9781475734904 | |

Release | 2013-03-09 | |

Pages | 441 | |

Download Link | Click Here |

Designed for a junior-senior level course for mathematics majors, including those who plan to teach in secondary school. The first chapter presents several finite geometries in an axiomatic framework, while Chapter 2 continues the synthetic approach in introducing both Euclids and ideas of non-Euclidean geometry. There follows a new introduction to symmetry and hands-on explorations of isometries that precedes an extensive analytic treatment of similarities and affinities. Chapter 4 presents plane projective geometry both synthetically and analytically, and the new Chapter 5 uses a descriptive and exploratory approach to introduce chaos theory and fractal geometry, stressing the self-similarity of fractals and their generation by transformations from Chapter 3. Throughout, each chapter includes a list of suggested resources for applications or related topics in areas such as art and history, plus this second edition points to Web locations of author-developed guides for dynamic software explorations of the Poincaré model, isometries, projectivities, conics and fractals. Parallel versions are available for "Cabri Geometry" and "Geometers Sketchpad". |

Author | James R. Kirkwood | |

ISBN-10 | 9780123869111 | |

Release | 2013 | |

Pages | 418 | |

Download Link | Click Here |

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques. |

Author | T. M. J. A. Cooray | |

ISBN-10 | 1842653601 | |

Release | 2006-01-01 | |

Pages | 368 | |

Download Link | Click Here |

Based on many years of experience of the author Complex Analysis with Vector Calculus provides clear and condensed treatment of the subject. It is primarily intended to be used by undergraduate students of engineering and science as a part of a course in engineering mathematics, where they are introduced to complex variable theory, through conceptual development of analysis. The book also introduces vector algebra, step by step, with due emphasis on various operations on vector field and scalar fields. Especially, it introduces proof of vector identities by use of a new approach and includes many examples to clarify the ideas and familiarize students with various techniques of problem solving. |

Author | Robert S. Borden | |

ISBN-10 | 9780486150383 | |

Release | 2012-09-11 | |

Pages | 416 | |

Download Link | Click Here |

An excellent undergraduate text examines sets and structures, limit and continuity in En, measure and integration, differentiable mappings, sequences and series, applications of improper integrals, more. Problems with tips and solutions for some. |

Author | M.H. Protter | |

ISBN-10 | 9781461599906 | |

Release | 2012-12-06 | |

Pages | 507 | |

Download Link | Click Here |

The first course in analysis which follows elementary calculus is a critical one for students who are seriously interested in mathematics. Traditional advanced calculus was precisely what its name indicates-a course with topics in calculus emphasizing problem solving rather than theory. As a result students were often given a misleading impression of what mathematics is all about; on the other hand the current approach, with its emphasis on theory, gives the student insight in the fundamentals of analysis. In A First Course in Real Analysis we present a theoretical basis of analysis which is suitable for students who have just completed a course in elementary calculus. Since the sixteen chapters contain more than enough analysis for a one year course, the instructor teaching a one or two quarter or a one semester junior level course should easily find those topics which he or she thinks students should have. The first Chapter, on the real number system, serves two purposes. Because most students entering this course have had no experience in devising proofs of theorems, it provides an opportunity to develop facility in theorem proving. Although the elementary processes of numbers are familiar to most students, greater understanding of these processes is acquired by those who work the problems in Chapter 1. As a second purpose, we provide, for those instructors who wish to give a comprehen sive course in analysis, a fairly complete treatment of the real number system including a section on mathematical induction. |