Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

A Short Introduction to Quantum Information and Quantum Computation

A Short Introduction to Quantum Information and Quantum Computation Author Michel Le Bellac
ISBN-10 1139457047
Release 2006-06-15
Download Link Click Here

Quantum information and computation is a rapidly expanding and cross-disciplinary subject. This book, first published in 2006, gives a self-contained introduction to the field for physicists, mathematicians and computer scientists who want to know more about this exciting subject. After a step-by-step introduction to the quantum bit (qubit) and its main properties, the author presents the necessary background in quantum mechanics. The core of the subject, quantum computation, is illustrated by a detailed treatment of three quantum algorithms: Deutsch, Grover and Shor. The final chapters are devoted to the physical implementation of quantum computers, including the most recent aspects, such as superconducting qubits and quantum dots, and to a short account of quantum information. Written at a level suitable for undergraduates in physical sciences, no previous knowledge of quantum mechanics is assumed, and only elementary notions of physics are required. The book includes many short exercises, with solutions available to instructors through [email protected]

An Introduction to Quantum Computing

An Introduction to Quantum Computing Author Phillip Kaye
ISBN-10 9780198570004
Release 2007
Pages 274
Download Link Click Here

The authors provide an introduction to quantum computing. Aimed at advanced undergraduate and beginning graduate students in these disciplines, this text is illustrated with diagrams and exercises.

Quantum Computation and Quantum Information

Quantum Computation and Quantum Information Author Michael A. Nielsen
ISBN-10 9781139495486
Release 2010-12-09
Download Link Click Here

One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.

Quantum Information and Quantum Computing

Quantum Information and Quantum Computing Author Mikio Nakahara
ISBN-10 9789814425223
Release 2013
Pages 179
Download Link Click Here

The open research center project "Interdisciplinary fundamental research toward realization of a quantum computer" has been supported by the Ministry of Education, Japan for five years. This is a collection of the research outcomes by the members engaged in the project. To make the presentation self-contained, it starts with an overview by Mikio Nakahara, which serves as a concise introduction to quantum information and quantum computing. Subsequent contributions include subjects from physics, chemistry, mathematics, and information science, reflecting upon the wide variety of scientists working under this project. These contributions introduce NMR quantum computing and related techniques, number theory and coding theory, quantum error correction, photosynthesis, non-classical correlations and entanglement, neutral atom quantum computer, among others. Each of the contributions will serve as a short introduction to these cutting edge research fields.

Introduction to Topological Quantum Computation

Introduction to Topological Quantum Computation Author Jiannis K. Pachos
ISBN-10 9781139936682
Release 2012-04-12
Download Link Click Here

Combining physics, mathematics and computer science, topological quantum computation is a rapidly expanding research area focused on the exploration of quantum evolutions that are immune to errors. In this book, the author presents a variety of different topics developed together for the first time, forming an excellent introduction to topological quantum computation. The makings of anyonic systems, their properties and their computational power are presented in a pedagogical way. Relevant calculations are fully explained, and numerous worked examples and exercises support and aid understanding. Special emphasis is given to the motivation and physical intuition behind every mathematical concept. Demystifying difficult topics by using accessible language, this book has broad appeal and is ideal for graduate students and researchers from various disciplines who want to get into this new and exciting research field.

Quantum Information Computation and Communication

Quantum Information  Computation and Communication Author Jonathan A. Jones
ISBN-10 9781139510622
Release 2012-07-19
Download Link Click Here

Quantum physics allows entirely new forms of computation and cryptography, which could perform tasks currently impossible on classical devices, leading to an explosion of new algorithms, communications protocols and suggestions for physical implementations of all these ideas. As a result, quantum information has made the transition from an exotic research topic to part of mainstream undergraduate courses in physics. Based on years of teaching experience, this textbook builds from simple fundamental concepts to cover the essentials of the field. Aimed at physics undergraduate students with a basic background in quantum mechanics, it guides readers through theory and experiment, introducing all the central concepts without getting caught up in details. Worked examples and exercises make this useful as a self-study text for those who want a brief introduction before starting on more advanced books. Solutions are available online at

Quantum Computation and Quantum Information Theory

Quantum Computation and Quantum Information Theory Author C Macchiavello
ISBN-10 9789814494052
Release 2001-01-17
Pages 532
Download Link Click Here

Quantum information theory has revolutionised our view on the true nature of information and has led to such intriguing topics as teleportation and quantum computation. The field — by its very nature strongly interdisciplinary, with deep roots in the foundations both of quantum mechanics and of information theory and computer science — has become a major subject for scientists working in fields as diverse as quantum optics, superconductivity or information theory, all the way to computer engineers. The aim of this book is to provide guidance and introduce the broad literature in all the various aspects of quantum information theory. The topics covered range from the fundamental aspects of the theory, like quantum algorithms and quantum complexity, to the technological aspects of the design of quantum-information-processing devices. Each section of the book consists of a selection of key papers (with particular attention to their tutorial value), chosen and introduced by leading scientists in the specific area. An entirely new introduction to quantum complexity has been specially written for the book. Contents:Introductory ConceptsQuantum Entanglement ManipulationQuantum AlgorithmsQuantum ComplexityQuantum Error CorrectionQuantum ChannelsEntanglement Purification and Long-Distance Quantum CommunicationQuantum Key DistributionCavity Quantum ElectrodynamicsQuantum Computation with Ion TrapsJosephson Junctions and Quantum ComputationQuantum Computing in Optical LatticesQuantum Computation and Quantum Communication with ElectronsNMR Quantum Computing Readership: Physicists. Keywords:Quantum Computation;Quantum Information Theory;Quantum Cryptography;Quantum Error Correction;Quantum Complexity;Quantum Algorithms;Quantum Gates;Foundation of Quantum Mechanics;Quantum Theory;Quantum Channels;Quantum Mechanics

Quantum Computing

Quantum Computing Author Eleanor G. Rieffel
ISBN-10 9780262015066
Release 2011-03-04
Pages 372
Download Link Click Here

A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples.

Quantum Computing Since Democritus

Quantum Computing Since Democritus Author Scott Aaronson
ISBN-10 9780521199568
Release 2013-03-14
Pages 370
Download Link Click Here

Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.

Quantum Computer Science

Quantum Computer Science Author N. David Mermin
ISBN-10 1139466801
Release 2007-08-30
Download Link Click Here

In the 1990's it was realized that quantum physics has some spectacular applications in computer science. This book is a concise introduction to quantum computation, developing the basic elements of this new branch of computational theory without assuming any background in physics. It begins with an introduction to the quantum theory from a computer-science perspective. It illustrates the quantum-computational approach with several elementary examples of quantum speed-up, before moving to the major applications: Shor's factoring algorithm, Grover's search algorithm, and quantum error correction. The book is intended primarily for computer scientists who know nothing about quantum theory, but will also be of interest to physicists who want to learn the theory of quantum computation, and philosophers of science interested in quantum foundational issues. It evolved during six years of teaching the subject to undergraduates and graduate students in computer science, mathematics, engineering, and physics, at Cornell University.

Quantum Theory A Very Short Introduction

Quantum Theory  A Very Short Introduction Author John Polkinghorne
ISBN-10 9780191577673
Release 2002-05-30
Pages 128
Download Link Click Here

Quantum Theory is the most revolutionary discovery in physics since Newton. This book gives a lucid, exciting, and accessible account of the surprising and counterintuitive ideas that shape our understanding of the sub-atomic world. It does not disguise the problems of interpretation that still remain unsettled 75 years after the initial discoveries. The main text makes no use of equations, but there is a Mathematical Appendix for those desiring stronger fare. Uncertainty, probabilistic physics, complementarity, the problematic character of measurement, and decoherence are among the many topics discussed. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

Quantum Computer Science

Quantum Computer Science Author Marco Lanzagorta
ISBN-10 9781598297324
Release 2009
Pages 108
Download Link Click Here

In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computing rather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distinguishing feature of this text is our detailed discussion of the circuit complexity of quantum algorithms. To the extent possible we have presented the material in a form that is accessible to the computer scientist, but in many cases we retain the conventional physics notation so that the reader will also be able to consult the relevant quantum computing literature. Although we expect the reader to have a solid understanding of linear algebra, we do not assume a background in physics. This text is based on lectures given as short courses and invited presentations around the world, and it has been used as the primary text for a graduate course at George Mason University. In all these cases our challenge has been the same: how to present to a general audience a concise introduction to the algorithmic structure and applications of quantum computing on an extremely short period of time. The feedback from these courses and presentations has greatly aided in making our exposition of challenging concepts more accessible to a general audience. Table of Contents: Introduction / The Algorithmic Structure of Quantum Computing / Advantages and Limitations of Quantum Computing / Amplitude Amplification / Case Study: Computational Geometry / The Quantum Fourier Transform / Case Study: The Hidden Subgroup / Circuit Complexity Analysis of Quantum Algorithms / Conclusions / Bibliography

Quantum Algorithms Via Linear Algebra

Quantum Algorithms Via Linear Algebra Author Richard J. Lipton
ISBN-10 9780262028394
Release 2014-12-15
Pages 208
Download Link Click Here

Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics.

NMR Quantum Information Processing

NMR Quantum Information Processing Author Ivan Oliveira
ISBN-10 0080497527
Release 2011-04-18
Pages 264
Download Link Click Here

Quantum Computation and Quantum Information (QIP) deals with the identification and use of quantum resources for information processing. This includes three main branches of investigation: quantum algorithm design, quantum simulation and quantum communication, including quantum cryptography. Along the past few years, QIP has become one of the most active area of research in both, theoretical and experimental physics, attracting students and researchers fascinated, not only by the potential practical applications of quantum computers, but also by the possibility of studying fundamental physics at the deepest level of quantum phenomena. NMR Quantum Computation and Quantum Information Processing describes the fundamentals of NMR QIP, and the main developments which can lead to a large-scale quantum processor. The text starts with a general chapter on the interesting topic of the physics of computation. The very first ideas which sparkled the development of QIP came from basic considerations of the physical processes underlying computational actions. In Chapter 2 it is made an introduction to NMR, including the hardware and other experimental aspects of the technique. In Chapter 3 we revise the fundamentals of Quantum Computation and Quantum Information. The chapter is very much based on the extraordinary book of Michael A. Nielsen and Isaac L. Chuang, with an upgrade containing some of the latest developments, such as QIP in phase space, and telecloning. Chapter 4 describes how NMR generates quantum logic gates from radiofrequency pulses, upon which quantum protocols are built. It also describes the important technique of Quantum State Tomography for both, quadrupole and spin 1/2 nuclei. Chapter 5 describes some of the main experiments of quantum algorithm implementation by NMR, quantum simulation and QIP in phase space. The important issue of entanglement in NMR QIP experiments is discussed in Chapter 6. This has been a particularly exciting topic in the literature. The chapter contains a discussion on the theoretical aspects of NMR entanglement, as well as some of the main experiments where this phenomenon is reported. Finally, Chapter 7 is an attempt to address the future of NMR QIP, based in very recent developments in nanofabrication and single-spin detection experiments. Each chapter is followed by a number of problems and solutions. * Presents a large number of problems with solutions, ideal for students * Brings together topics in different areas: NMR, nanotechnology, quantum computation * Extensive references

A Shortcut Through Time

A Shortcut Through Time Author George Johnson
ISBN-10 9780307424518
Release 2007-12-18
Pages 224
Download Link Click Here

In this remarkably illustrative and thoroughly accessible look at one of the most intriguing frontiers in science and computers, award-winning New York Times writer George Johnson reveals the fascinating world of quantum computing—the holy grail of super computers where the computing power of single atoms is harnassed to create machines capable of almost unimaginable calculations in the blink of an eye. As computer chips continue to shrink in size, scientists anticipate the end of the road: A computer in which each switch is comprised of a single atom. Such a device would operate under a different set of physical laws: The laws of quantum mechanics. Johnson gently leads the curious outsider through the surprisingly simple ideas needed to understand this dream, discussing the current state of the revolution, and ultimately assessing the awesome power these machines could have to change our world. From the Trade Paperback edition.

Quantum Error Correction

Quantum Error Correction Author Daniel A. Lidar
ISBN-10 9780521897877
Release 2013-09-12
Pages 666
Download Link Click Here

Focusing on methods for quantum error correction, this book is invaluable for graduate students and experts in quantum information science.

Quantum Computing Explained

Quantum Computing Explained Author David McMahon
ISBN-10 0470181362
Release 2007-12-14
Pages 420
Download Link Click Here

A self-contained treatment of the fundamentals of quantum computing This clear, practical book takes quantum computing out of the realm of theoretical physics and teaches the fundamentals of the field to students and professionals who have not had training in quantum computing or quantum information theory, including computer scientists, programmers, electrical engineers, mathematicians, physics students, and chemists. The author cuts through the conventions of typical jargon-laden physics books and instead presents the material through his unique "how-to" approach and friendly, conversational style. Readers will learn how to carry out calculations with explicit details and will gain a fundamental grasp of: * Quantum mechanics * Quantum computation * Teleportation * Quantum cryptography * Entanglement * Quantum algorithms * Error correction A number of worked examples are included so readers can see how quantum computing is done with their own eyes, while answers to similar end-of-chapter problems are provided for readers to check their own work as they learn to master the information. Ideal for professionals and graduate-level students alike, Quantum Computing Explained delivers the fundamentals of quantum computing readers need to be able to understand current research papers and go on to study more advanced quantum texts.