Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Abstract Algebra

Abstract Algebra Author Jonathan K. Hodge
ISBN-10 9781466567061
Release 2013-12-21
Pages 595
Download Link Click Here

To learn and understand mathematics, students must engage in the process of doing mathematics. Emphasizing active learning, Abstract Algebra: An Inquiry-Based Approach not only teaches abstract algebra but also provides a deeper understanding of what mathematics is, how it is done, and how mathematicians think. The book can be used in both rings-first and groups-first abstract algebra courses. Numerous activities, examples, and exercises illustrate the definitions, theorems, and concepts. Through this engaging learning process, students discover new ideas and develop the necessary communication skills and rigor to understand and apply concepts from abstract algebra. In addition to the activities and exercises, each chapter includes a short discussion of the connections among topics in ring theory and group theory. These discussions help students see the relationships between the two main types of algebraic objects studied throughout the text. Encouraging students to do mathematics and be more than passive learners, this text shows students that the way mathematics is developed is often different than how it is presented; that definitions, theorems, and proofs do not simply appear fully formed in the minds of mathematicians; that mathematical ideas are highly interconnected; and that even in a field like abstract algebra, there is a considerable amount of intuition to be found.



Abstract Algebra

Abstract Algebra Author Jonathan K. Hodge
ISBN-10 9781466567085
Release 2013-12-21
Pages 595
Download Link Click Here

To learn and understand mathematics, students must engage in the process of doing mathematics. Emphasizing active learning, Abstract Algebra: An Inquiry-Based Approach not only teaches abstract algebra but also provides a deeper understanding of what mathematics is, how it is done, and how mathematicians think. The book can be used in both rings-first and groups-first abstract algebra courses. Numerous activities, examples, and exercises illustrate the definitions, theorems, and concepts. Through this engaging learning process, students discover new ideas and develop the necessary communication skills and rigor to understand and apply concepts from abstract algebra. In addition to the activities and exercises, each chapter includes a short discussion of the connections among topics in ring theory and group theory. These discussions help students see the relationships between the two main types of algebraic objects studied throughout the text. Encouraging students to do mathematics and be more than passive learners, this text shows students that the way mathematics is developed is often different than how it is presented; that definitions, theorems, and proofs do not simply appear fully formed in the minds of mathematicians; that mathematical ideas are highly interconnected; and that even in a field like abstract algebra, there is a considerable amount of intuition to be found.



Linear and Nonlinear Programming with Maple

Linear and Nonlinear Programming with Maple Author Paul E. Fishback
ISBN-10 1420090658
Release 2009-12-09
Pages 413
Download Link Click Here

Helps Students Understand Mathematical Programming Principles and Solve Real-World Applications Supplies enough mathematical rigor yet accessible enough for undergraduates Integrating a hands-on learning approach, a strong linear algebra focus, MapleTM software, and real-world applications, Linear and Nonlinear Programming with MapleTM: An Interactive, Applications-Based Approach introduces undergraduate students to the mathematical concepts and principles underlying linear and nonlinear programming. This text fills the gap between management science books lacking mathematical detail and rigor and graduate-level books on mathematical programming. Essential linear algebra tools Throughout the text, topics from a first linear algebra course, such as the invertible matrix theorem, linear independence, transpose properties, and eigenvalues, play a prominent role in the discussion. The book emphasizes partitioned matrices and uses them to describe the simplex algorithm in terms of matrix multiplication. This perspective leads to streamlined approaches for constructing the revised simplex method, developing duality theory, and approaching the process of sensitivity analysis. The book also discusses some intermediate linear algebra topics, including the spectral theorem and matrix norms. Maple enhances conceptual understanding and helps tackle problems Assuming no prior experience with Maple, the author provides a sufficient amount of instruction for students unfamiliar with the software. He also includes a summary of Maple commands as well as Maple worksheets in the text and online. By using Maple’s symbolic computing components, numeric capabilities, graphical versatility, and intuitive programming structures, students will acquire a deep conceptual understanding of major mathematical programming principles, along with the ability to solve moderately sized real-world applications. Hands-on activities that engage students Throughout the book, student understanding is evaluated through "waypoints" that involve basic computations or short questions. Some problems require paper-and-pencil calculations; others involve more lengthy calculations better suited for performing with Maple. Many sections contain exercises that are conceptual in nature and/or involve writing proofs. In addition, six substantial projects in one of the appendices enable students to solve challenging real-world problems.



Abstract Algebra

Abstract Algebra Author Gary L. Mullen
ISBN-10 9781482250077
Release 2016-12-19
Pages 214
Download Link Click Here

Abstract Algebra: A Gentle Introduction advantages a trend in mathematics textbook publishing towards smaller, less expensive and brief introductions to primary courses. The authors move away from the ‘everything for everyone’ approach so common in textbooks. Instead, they provide the reader with coverage of numerous algebraic topics to cover the most important areas of abstract algebra. Through a careful selection of topics, supported by interesting applications, the authors Intend the book to be used for a one-semester course in abstract algebra. It is suitable for an introductory course in for mathematics majors. The text is also very suitable for education majors who need to have an introduction to the topic. As textbooks go through various editions and authors employ the suggestions of numerous well-intentioned reviewers, these book become larger and larger and subsequently more expensive. This book is meant to counter that process. Here students are given a "gentle introduction," meant to provide enough for a course, yet also enough to encourage them toward future study of the topic. Features Groups before rings approach Interesting modern applications Appendix includes mathematical induction, the well-ordering principle, sets, functions, permutations, matrices, and complex nubers. Numerous exercises at the end of each section Chapter "Hint and Partial Solutions" offers built in solutions manual



Visual Group Theory

Visual Group Theory Author Nathan Carter
ISBN-10 088385757X
Release 2009-04-09
Pages 297
Download Link Click Here

Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts. But its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.



Discovering Group Theory

Discovering Group Theory Author Tony Barnard
ISBN-10 9781315405766
Release 2016-12-19
Pages 231
Download Link Click Here

Discovering Group Theory: A Transition to Advanced Mathematics presents the usual material that is found in a first course on groups and then does a bit more. The book is intended for students who find the kind of reasoning in abstract mathematics courses unfamiliar and need extra support in this transition to advanced mathematics. The book gives a number of examples of groups and subgroups, including permutation groups, dihedral groups, and groups of integer residue classes. The book goes on to study cosets and finishes with the first isomorphism theorem. Very little is assumed as background knowledge on the part of the reader. Some facility in algebraic manipulation is required, and a working knowledge of some of the properties of integers, such as knowing how to factorize integers into prime factors. The book aims to help students with the transition from concrete to abstract mathematical thinking. ? Features Full proofs with all details clearly laid out and explained Reader-friendly conversational style Complete solutions to all exercises Focus on deduction, helping students learn how to construct proofs "Asides" to the reader, providing overviews and connections "What you should know" reviews at the end of each chapter



Number Theory Through Inquiry

Number Theory Through Inquiry Author David C. Marshall
ISBN-10 9780883857519
Release 2007
Pages 140
Download Link Click Here

This innovative textbook leads students on a carefully guided discovery of introductory number theory. The book has two equally significant goals. The first is to help students develop mathematical thinking skills, particularly theorem-proving skills. The other goal is to help students understand some of the wonderfully rich ideas in the mathematical study of numbers. This book is appropriate for a proof transitions course, for independent study, or for a course designed as an introduction to abstract mathematics. It is designed to be used with an instructional technique variously called guided discovery or Modified Moore Method or Inquiry Based Learning (IBL). Instructors' materials explain the instructional method, which gives students a totally different experience compared to a standard lecture course. Students develop an attitude of personal reliance and a sense that they can think effectively about difficult problems; goals that are fundamental to the educational enterprise within and beyond mathematics.



Euclidean Geometry

Euclidean Geometry Author David M. Clark
ISBN-10 9780821889855
Release 2012-06-26
Pages 127
Download Link Click Here

Geometry has been an essential element in the study of mathematics since antiquity. Traditionally, we have also learned formal reasoning by studying Euclidean geometry. In this book, David Clark develops a modern axiomatic approach to this ancient subject, both in content and presentation. Mathematically, Clark has chosen a new set of axioms that draw on a modern understanding of set theory and logic, the real number continuum and measure theory, none of which were available in Euclid's time. The result is a development of the standard content of Euclidean geometry with the mathematical precision of Hilbert's foundations of geometry. In particular, the book covers all the topics listed in the Common Core State Standards for high school synthetic geometry. The presentation uses a guided inquiry, active learning pedagogy. Students benefit from the axiomatic development because they themselves solve the problems and prove the theorems with the instructor serving as a guide and mentor. Students are thereby empowered with the knowledge that they can solve problems on their own without reference to authority. This book, written for an undergraduate axiomatic geometry course, is particularly well suited for future secondary school teachers. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.



A First Course in Abstract Algebra

A First Course in Abstract Algebra Author Marlow Anderson
ISBN-10 9781420057119
Release 2005-01-27
Pages 696
Download Link Click Here

Most abstract algebra texts begin with groups, then proceed to rings and fields. While groups are the logically simplest of the structures, the motivation for studying groups can be somewhat lost on students approaching abstract algebra for the first time. To engage and motivate them, starting with something students know and abstracting from there is more natural-and ultimately more effective. Authors Anderson and Feil developed A First Course in Abstract Algebra: Rings, Groups and Fields based upon that conviction. The text begins with ring theory, building upon students' familiarity with integers and polynomials. Later, when students have become more experienced, it introduces groups. The last section of the book develops Galois Theory with the goal of showing the impossibility of solving the quintic with radicals. Each section of the book ends with a "Section in a Nutshell" synopsis of important definitions and theorems. Each chapter includes "Quick Exercises" that reinforce the topic addressed and are designed to be worked as the text is read. Problem sets at the end of each chapter begin with "Warm-Up Exercises" that test fundamental comprehension, followed by regular exercises, both computational and "supply the proof" problems. A Hints and Answers section is provided at the end of the book. As stated in the title, this book is designed for a first course--either one or two semesters in abstract algebra. It requires only a typical calculus sequence as a prerequisite and does not assume any familiarity with linear algebra or complex numbers.



Abstract Algebra

Abstract Algebra Author William Paulsen
ISBN-10 9781498719773
Release 2016-02-10
Pages 619
Download Link Click Here

The new edition of Abstract Algebra: An Interactive Approach presents a hands-on and traditional approach to learning groups, rings, and fields. It then goes further to offer optional technology use to create opportunities for interactive learning and computer use. This new edition offers a more traditional approach offering additional topics to the primary syllabus placed after primary topics are covered. This creates a more natural flow to the order of the subjects presented. This edition is transformed by historical notes and better explanations of why topics are covered. This innovative textbook shows how students can better grasp difficult algebraic concepts through the use of computer programs. It encourages students to experiment with various applications of abstract algebra, thereby obtaining a real-world perspective of this area. Each chapter includes, corresponding Sage notebooks, traditional exercises, and several interactive computer problems that utilize Sage and Mathematica® to explore groups, rings, fields and additional topics. This text does not sacrifice mathematical rigor. It covers classical proofs, such as Abel’s theorem, as well as many topics not found in most standard introductory texts. The author explores semi-direct products, polycyclic groups, Rubik’s Cube®-like puzzles, and Wedderburn’s theorem. The author also incorporates problem sequences that allow students to delve into interesting topics, including Fermat’s two square theorem.



Geometric Structures

Geometric Structures Author Douglas B. Aichele
ISBN-10 0131483927
Release 2007-04
Pages 667
Download Link Click Here

This text provides a creative, inquiry-based experience with geometry that is appropriate for prospective elementary and middle school teachers. The coherent series of text activities supports each student's growth toward being a confident, independent learner empowered with the help of peers to make sense of the geometric world. This curriculum is explicitly developed to provide future elementary and middle school teachers.



Introduction to Experimental Mathematics

Introduction to Experimental Mathematics Author Søren Eilers
ISBN-10 9781107156135
Release 2017-06
Pages 320
Download Link Click Here

Mathematics is not, and never will be, an empirical science, but mathematicians are finding that the use of computers and specialized software allows the generation of mathematical insight in the form of conjectures and examples, which pave the way for theorems and their proofs. In this way, the experimental approach to pure mathematics is revolutionizing the way research mathematicians work. As the first of its kind, this book provides material for a one-semester course in experimental mathematics that will give students the tools and training needed to systematically investigate and develop mathematical theory using computer programs written in Maple. Accessible to readers without prior programming experience, and using examples of concrete mathematical problems to illustrate a wide range of techniques, the book gives a thorough introduction to the field of experimental mathematics, which will prepare students for the challenge posed by open mathematical problems.



Problem Based Learning for Math Science

Problem Based Learning for Math   Science Author Diane L. Ronis
ISBN-10 9781412955591
Release 2007-09-10
Pages 156
Download Link Click Here

Illustrates how to strengthen learners' problem-solving skills by incorporating problem-based learning (PBL) with Internet resources and presents projects that correlate to national science, mathematics, and technology standards.



A Mathematics Course for Political and Social Research

A Mathematics Course for Political and Social Research Author Will H. Moore
ISBN-10 9781400848614
Release 2013-07-24
Pages 456
Download Link Click Here

Political science and sociology increasingly rely on mathematical modeling and sophisticated data analysis, and many graduate programs in these fields now require students to take a "math camp" or a semester-long or yearlong course to acquire the necessary skills. Available textbooks are written for mathematics or economics majors, and fail to convey to students of political science and sociology the reasons for learning often-abstract mathematical concepts. A Mathematics Course for Political and Social Research fills this gap, providing both a primer for math novices in the social sciences and a handy reference for seasoned researchers. The book begins with the fundamental building blocks of mathematics and basic algebra, then goes on to cover essential subjects such as calculus in one and more than one variable, including optimization, constrained optimization, and implicit functions; linear algebra, including Markov chains and eigenvectors; and probability. It describes the intermediate steps most other textbooks leave out, features numerous exercises throughout, and grounds all concepts by illustrating their use and importance in political science and sociology. Uniquely designed and ideal for students and researchers in political science and sociology Uses practical examples from political science and sociology Features "Why Do I Care?" sections that explain why concepts are useful Includes numerous exercises Complete online solutions manual (available only to professors, email david.siegel at duke.edu, subject line "Solution Set") Selected solutions available online to students



What is Mathematics

What is Mathematics Author Richard Courant
ISBN-10 0195105192
Release 1996
Pages 566
Download Link Click Here

A discussion of fundamental mathematical principles from algebra to elementary calculus designed to promote constructive mathematical reasoning.



How People Learn

How People Learn Author National Research Council
ISBN-10 9780309131971
Release 2000-08-11
Pages 384
Download Link Click Here

First released in the Spring of 1999, How People Learn has been expanded to show how the theories and insights from the original book can translate into actions and practice, now making a real connection between classroom activities and learning behavior. This edition includes far-reaching suggestions for research that could increase the impact that classroom teaching has on actual learning. Like the original edition, this book offers exciting new research about the mind and the brain that provides answers to a number of compelling questions. When do infants begin to learn? How do experts learn and how is this different from non-experts? What can teachers and schools do-with curricula, classroom settings, and teaching methods--to help children learn most effectively? New evidence from many branches of science has significantly added to our understanding of what it means to know, from the neural processes that occur during learning to the influence of culture on what people see and absorb. How People Learn examines these findings and their implications for what we teach, how we teach it, and how we assess what our children learn. The book uses exemplary teaching to illustrate how approaches based on what we now know result in in-depth learning. This new knowledge calls into question concepts and practices firmly entrenched in our current education system. Topics include: How learning actually changes the physical structure of the brain. How existing knowledge affects what people notice and how they learn. What the thought processes of experts tell us about how to teach. The amazing learning potential of infants. The relationship of classroom learning and everyday settings of community and workplace. Learning needs and opportunities for teachers. A realistic look at the role of technology in education.



Exploring Advanced Euclidean Geometry with GeoGebra

Exploring Advanced Euclidean Geometry with GeoGebra Author Gerard A. Venema
ISBN-10 9780883857847
Release 2013
Pages 129
Download Link Click Here

This book provides an inquiry-based introduction to advanced Euclidean geometry. It utilizes dynamic geometry software, specifically GeoGebra, to explore the statements and proofs of many of the most interesting theorems in the subject. Topics covered include triangle centers, inscribed, circumscribed, and escribed circles, medial and orthic triangles, the nine-point circle, duality, and the theorems of Ceva and Menelaus, as well as numerous applications of those theorems. The final chapter explores constructions in the Poincaré disk model for hyperbolic geometry. The book can be used either as a computer laboratory manual to supplement an undergraduate course in geometry or as a stand-alone introduction to advanced topics in Euclidean geometry. The text consists almost entirely of exercises (with hints) that guide students as they discover the geometric relationships for themselves. First the ideas are explored at the computer and then those ideas are assembled into a proof of the result under investigation. The goals are for the reader to experience the joy of discovering geometric relationships, to develop a deeper understanding of geometry, and to encourage an appreciation for the beauty of Euclidean geometry.