Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Advanced Computing in Electron Microscopy

Advanced Computing in Electron Microscopy Author Earl J. Kirkland
ISBN-10 0306459361
Release 1998-09-30
Pages 250
Download Link Click Here

Image simulation has become a common tool in HREM (High Resolution Electron Microscopy) in recent years. However, the literature on the subject is scattered among many different journals and conference proceedings that have occurred in the last two or three decades. It is difficult for beginners to get started in this field. The principle method of image simulation has come to be known as simply the multislice method. This book attempts to bring the diverse information on image simulation together into one place and to provide a background on how to use the multislice method to simulate high resolution images in both conventional and scanning transmission electron microscopy. The main goals of image simulation include understanding the microscope and interpreting high resolution information in the recorded micrographs. This book contains sections on the theory of image formation and simulation as well as a more practical introduction on how to use the multislice method on real specimens. Also included with this book is a CD-ROM with working programs to perform image simulation. The source code as well as the executable code for IBM-PC and Apple Macintosh computers is included. Although the programs may not have a very elegant user interface by today's standards (simple command line dialog), the source code should be very portable to a variety of different computers. It has been compiled and run on Mac's, PC's and several different types of UNIX computers.



Aberration Corrected Imaging in Transmission Electron Microscopy

Aberration Corrected Imaging in Transmission Electron Microscopy Author Rolf Erni
ISBN-10 9781783265305
Release 2015-03-23
Pages 432
Download Link Click Here

Aberration-Corrected Imaging in Transmission Electron Microscopy provides an introduction to aberration-corrected atomic-resolution electron microscopy imaging in materials and physical sciences. It covers both the broad beam transmission mode (TEM; transmission electron microscopy) and the scanning transmission mode (STEM; scanning transmission electron microscopy). The book is structured in three parts. The first part introduces the basics of conventional atomic-resolution electron microscopy imaging in TEM and STEM modes. This part also describes limits of conventional electron microscopes and possible artefacts which are caused by the intrinsic lens aberrations that are unavoidable in such instruments. The second part introduces fundamental electron optical concepts and thus provides a brief introduction to electron optics. Based on the first and second parts of the book, the third part focuses on aberration correction; it describes the various aberrations in electron microscopy and introduces the concepts of spherical aberration correctors and advanced aberration correctors, including correctors for chromatic aberration. This part also provides guidelines on how to optimize the imaging conditions for atomic-resolution STEM and TEM imaging. This second edition has been completely revised and updated in order to incorporate the very recent technological and scientific achievements that have been realized since the first edition appeared in 2010.



Advances in Imaging and Electron Physics

Advances in Imaging and Electron Physics Author Peter W. Hawkes
ISBN-10 0120147483
Release 1999-02
Pages 353
Download Link Click Here

Advances in Imaging & Electron Physics merges two long-running serials--Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.



Minerals at the Nanoscale

Minerals at the Nanoscale Author F. Nieto
ISBN-10 9780903056342
Release 2013-05-24
Pages 500
Download Link Click Here

The editors have gathered in this book, reviews of past and current studies of mineral groups that have played important roles in geology, environmental science and health science. The various chapters cover the application of TEM and related techniques to: mineral groups in which TEM investigations have been extensive and crucial to the understanding of their mineralogy, namely pyriboles, serpentines, clays, micas and other metamorphic phyllosilicates, oxides and oxyhydroxides, sulfides and carbonates. Some research fields for which TEM is particularly suitable and which have produced significant advances, in particular, are inclusions and traces, extraterrestrial material, deformation processes, non-stoichiometry and superstructures, and biominerals. Nowadays, we are witnessing the push for the improvement of detectors for imaging (direct detection of electrons) and X-rays (silicon drift detectors and annular high solid-angle of collection detectors), the development of new support materials (e.g. graphene) and liquid cells for TEMs. Most of these new technologies have not yet been applied to mineralogical problems but we hope they will be in the near future.



Liquid Cell Electron Microscopy

Liquid Cell Electron Microscopy Author
ISBN-10 9781107116573
Release
Pages
Download Link Click Here

Liquid Cell Electron Microscopy has been writing in one form or another for most of life. You can find so many inspiration from Liquid Cell Electron Microscopy also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Liquid Cell Electron Microscopy book for free.



4D Electron Microscopy

4D Electron Microscopy Author Ahmed H. Zewail
ISBN-10 9781848164000
Release 2010
Pages 341
Download Link Click Here

Structural phase transitions, mechanical deformations, and the embryonic stages of melting and crystallization are examples of phenomena that can now be imaged in unprecedented structural detail with high spatial resolution, and ten orders of magnitude as fast as hitherto. No monograph in existence attempts to cover the revolutionary dimensions that EM in its various modes of operation nowadays makes possible. The authors of this book chart these developments, and also compare the merits of coherent electron waves with those of synchrotron radiation. They judge it prudent to recall some important basic procedural and theoretical aspects of imaging and diffraction so that the reader may better comprehend the significance of the new vistas and applications now afoot. This book is not a vade mecum - numerous other texts are available for the practitioner for that purpose.



Field Emission Scanning Electron Microscopy

Field Emission Scanning Electron Microscopy Author Nicolas Brodusch
ISBN-10 9789811044335
Release 2017-09-25
Pages 137
Download Link Click Here

This book highlights what is now achievable in terms of materials characterization with the new generation of cold-field emission scanning electron microscopes applied to real materials at high spatial resolution. It discusses advanced scanning electron microscopes/scanning- transmission electron microscopes (SEM/STEM), simulation and post-processing techniques at high spatial resolution in the fields of nanomaterials, metallurgy, geology, and more. These microscopes now offer improved performance at very low landing voltage and high -beam probe current stability, combined with a routine transmission mode capability that can compete with the (scanning-) transmission electron microscopes (STEM/-TEM) historically run at higher beam accelerating voltage



Second AIAA NASA USAF Symposium on Automation Robotics and Advanced Computing for the National Space Program

Second AIAA NASA USAF Symposium on Automation  Robotics and Advanced Computing for the National Space Program Author
ISBN-10 PSU:000014299384
Release 1987
Pages
Download Link Click Here

Second AIAA NASA USAF Symposium on Automation Robotics and Advanced Computing for the National Space Program has been writing in one form or another for most of life. You can find so many inspiration from Second AIAA NASA USAF Symposium on Automation Robotics and Advanced Computing for the National Space Program also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Second AIAA NASA USAF Symposium on Automation Robotics and Advanced Computing for the National Space Program book for free.



Scanning Electron Microscope Optics and Spectrometers

Scanning Electron Microscope Optics and Spectrometers Author Anjam Khursheed
ISBN-10 9789812836670
Release 2011
Pages 402
Download Link Click Here

This book contains proposals to redesign the scanning electron microscope, so that it is more compatible with other charged particle beam instrumentation and analytical techniques commonly used in surface science research. It emphasizes the concepts underlying spectrometer designs in the scanning electron microscope, and spectrometers are discussed under one common framework so that their relative strengths and weaknesses can be more readily appreciated. This is done, for the most part, through simulations and derivations carried out by the author himself.The book is aimed at scientists, engineers and graduate students whose research area or study in some way involves the scanning electron microscope and/or charged particle spectrometers. It can be used both as an introduction to these subjects and as a guide to more advanced topics about scanning electron microscope redesign.



Journal of electron microscopy technique

Journal of electron microscopy technique Author
ISBN-10 UCAL:B5031456
Release 1988
Pages
Download Link Click Here

Journal of electron microscopy technique has been writing in one form or another for most of life. You can find so many inspiration from Journal of electron microscopy technique also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Journal of electron microscopy technique book for free.



Handbook of Charged Particle Optics

Handbook of Charged Particle Optics Author Jon Orloff
ISBN-10 0849325137
Release 1997-06-25
Pages 528
Download Link Click Here

This timely handbook contains chapters on the essential elements of high resolution charged particle optics and is written by many of the world's leading research scientists. It is a complete guide to understanding, designing, and using high resolution instrumentation such as transmission electron microscopes (TEMs), scanning electron microscopes (SEMs), scanning transmission electron microscopes (STEMs), and focused ion beam (FIB) systems. This handbook is evenly balanced between theory and application, and covers all the most important topics in this growing area. Handbook of High Resolution Charged Particle Optics explains how and why high resolution instruments work and how to apply this information when designing or using them.



Advanced Transmission Electron Microscopy

Advanced Transmission Electron Microscopy Author Jian Min Zuo
ISBN-10 9781493966073
Release 2016-10-26
Pages 729
Download Link Click Here

This volume expands and updates the coverage in the authors' popular 1992 book, Electron Microdiffraction. As the title implies, the focus of the book has changed from electron microdiffraction and convergent beam electron diffraction to all forms of advanced transmission electron microscopy. Special attention is given to electron diffraction and imaging, including high-resolution TEM and STEM imaging, and the application of these methods to crystals, their defects, and nanostructures. The authoritative text summarizes and develops most of the useful knowledge which has been gained over the years from the study of the multiple electron scattering problem, the recent development of aberration correctors and their applications to materials structure characterization, as well as the authors' extensive teaching experience in these areas. Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience is ideal for use as an advanced undergraduate or graduate level text in support of course materials in Materials Science, Physics or Chemistry departments.



Principles of Electron Optics Volume 2

Principles of Electron Optics  Volume 2 Author Peter W. Hawkes
ISBN-10 9780128134054
Release 2017-12-13
Pages 766
Download Link Click Here

Principles of Electron Optics: Applied Geometrical Optics, Second Edition gives detailed information about the many optical elements that use the theory presented in Volume 1: electrostatic and magnetic lenses, quadrupoles, cathode-lens-based instruments including the new ultrafast microscopes, low-energy-electron microscopes and photoemission electron microscopes and the mirrors found in their systems, Wien filters and deflectors. The chapter on aberration correction is largely new. The long section on electron guns describes recent theories and covers multi-column systems and carbon nanotube emitters. Monochromators are included in the section on curved-axis systems. The lists of references include many articles that will enable the reader to go deeper into the subjects discussed in the text. The book is intended for postgraduate students and teachers in physics and electron optics, as well as researchers and scientists in academia and industry working in the field of electron optics, electron and ion microscopy and nanolithography. Offers a fully revised and expanded new edition based on the latest research developments in electron optics Written by the top experts in the field Covers every significant advance in electron optics since the subject originated Contains exceptionally complete and carefully selected references and notes Serves both as a reference and text



Food Microstructures

Food Microstructures Author Vic Morris
ISBN-10 9780857098894
Release 2013-10-15
Pages 472
Download Link Click Here

The development of high-quality foods with desirable properties for both consumers and the food industry requires a comprehensive understanding of food systems and the control and rational design of food microstructures. Food microstructures reviews best practice and new developments in the determination of food microstructure. After a general introduction, chapters in part one review the principles and applications of various spectroscopy, tomography and microscopy techniques for revealing food microstructure, including nuclear magnetic resonance (NMR) methods, environmental scanning electron, probe, photonic force, acoustic, light, confocal and infrared microscopies. Part two explores the measurement, analysis and modelling of food microstructures. Chapters focus on rheology, tribology and methods for modelling and simulating the molecular, cellular and granular microstructure of foods, and for developing relationships between microstructure and mechanical and rheological properties of food structures. The book concludes with a useful case study on electron microscopy. Written by leading professionals and academics in the field, Food microstructures is an essential reference work for researchers and professionals in the processed foods and nutraceutical industries concerned with complex structures, the delivery and controlled release of nutrients, and the generation of improved foods. The book will also be of value to academics working in food science and the emerging field of soft matter. Reviews best practice and essential developments in food microstructure microscopy and modelling Discusses the principles and applications of various microscopy techniques used to discover food microstructure Explores the measurement, analysis and modelling of food microstructures



Scanning Electron Microscopy for the Life Sciences

Scanning Electron Microscopy for the Life Sciences Author Heide Schatten
ISBN-10 9780521195997
Release 2012-12-06
Pages 261
Download Link Click Here

A guide to modern scanning electron microscopy instrumentation, methodology and techniques, highlighting novel applications to cell and molecular biology.



Electron Beam Specimen Interactions and Simulation Methods in Microscopy

Electron Beam Specimen Interactions and Simulation Methods in Microscopy Author Budhika G. Mendis
ISBN-10 9781118696651
Release 2018-03-21
Pages 296
Download Link Click Here

A detailed presentation of the physics of electron beam-specimen interactions Electron microscopy is one of the most widely used characterisation techniques in materials science, physics, chemistry, and the life sciences. This book examines the interactions between the electron beam and the specimen, the fundamental starting point for all electron microscopy. Detailed explanations are provided to help reinforce understanding, and new topics at the forefront of current research are presented. It provides readers with a deeper knowledge of the subject, particularly if they intend to simulate electron beam-specimen interactions as part of their research projects. The book covers the vast majority of commonly used electron microscopy techniques. Some of the more advanced topics (annular bright field and dopant atom imaging, atomic resolution chemical analysis, band gap measurements) provide additional value, especially for readers who have access to advanced instrumentation, such as aberration-corrected and monochromated microscopes. Electron Beam-Specimen Interactions and Simulation Methods in Microscopy offers enlightening coverage of: the Monte-Carlo Method; Multislice Simulations; Bloch Waves in Conventional and Analytical Transmission Electron Microscopy; Bloch Waves in Scanning Transmission Electron Microscopy; Low Energy Loss and Core Loss EELS. It also supplements each chapter with clear diagrams and provides appendices at the end of the book to assist with the pre-requisites. A detailed presentation of the physics of electron beam-specimen interactions Each chapter first discusses the background physics before moving onto simulation methods Uses computer programs to simulate electron beam-specimen interactions (presented in the form of case studies) Includes hot topics brought to light due to advances in instrumentation (particularly aberration-corrected and monochromated microscopes) Electron Beam-Specimen Interactions and Simulation Methods in Microscopy benefits students undertaking higher education degrees, practicing electron microscopists who wish to learn more about their subject, and researchers who wish to obtain a deeper understanding of the subject matter for their own work.



Scanning Electron Microscopy and X Ray Microanalysis

Scanning Electron Microscopy and X Ray Microanalysis Author Joseph I. Goldstein
ISBN-10 9781493966769
Release 2017-11-17
Pages 550
Download Link Click Here

This thoroughly revised and updated Fourth Edition of a time-honored text provides the reader with a comprehensive introduction to the field of scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) for elemental microanalysis, electron backscatter diffraction analysis (EBSD) for micro-crystallography, and focused ion beams. Students and academic researchers will find the text to be an authoritative and scholarly resource, while SEM operators and a diversity of practitioners — engineers, technicians, physical and biological scientists, clinicians, and technical managers — will find that every chapter has been overhauled to meet the more practical needs of the technologist and working professional. In a break with the past, this Fourth Edition de-emphasizes the design and physical operating basis of the instrumentation, including the electron sources, lenses, detectors, etc. In the modern SEM, many of the low level instrument parameters are now controlled and optimized by the microscope’s software, and user access is restricted. Although the software control system provides efficient and reproducible microscopy and microanalysis, the user must understand the parameter space wherein choices are made to achieve effective and meaningful microscopy, microanalysis, and micro-crystallography. Therefore, special emphasis is placed on beam energy, beam current, electron detector characteristics and controls, and ancillary techniques such as energy dispersive x-ray spectrometry (EDS) and electron backscatter diffraction (EBSD). With 13 years between the publication of the third and fourth editions, new coverage reflects the many improvements in the instrument and analysis techniques. The SEM has evolved into a powerful and versatile characterization platform in which morphology, elemental composition, and crystal structure can be evaluated simultaneously. Extension of the SEM into a "dual beam" platform incorporating both electron and ion columns allows precision modification of the specimen by focused ion beam milling. New coverage in the Fourth Edition includes the increasing use of field emission guns and SEM instruments with high resolution capabilities, variable pressure SEM operation, theory, and measurement of x-rays with high throughput silicon drift detector (SDD-EDS) x-ray spectrometers. In addition to powerful vendor- supplied software to support data collection and processing, the microscopist can access advanced capabilities available in free, open source software platforms, including the National Institutes of Health (NIH) ImageJ-Fiji for image processing and the National Institute of Standards and Technology (NIST) DTSA II for quantitative EDS x-ray microanalysis and spectral simulation, both of which are extensively used in this work. However, the user has a responsibility to bring intellect, curiosity, and a proper skepticism to information on a computer screen and to the entire measurement process. This book helps you to achieve this goal. Realigns the text with the needs of a diverse audience from researchers and graduate students to SEM operators and technical managers Emphasizes practical, hands-on operation of the microscope, particularly user selection of the critical operating parameters to achieve meaningful results Provides step-by-step overviews of SEM, EDS, and EBSD and checklists of critical issues for SEM imaging, EDS x-ray microanalysis, and EBSD crystallographic measurements Makes extensive use of open source software: NIH ImageJ-FIJI for image processing and NIST DTSA II for quantitative EDS x-ray microanalysis and EDS spectral simulation. Includes case studies to illustrate practical problem solving Covers Helium ion scanning microscopy Organized into relatively self-contained modules – no need to "read it all" to understand a topic Includes an online supplement—an extensive "Database of Electron–Solid Interactions"—which can be accessed on SpringerLink, in Chapter 3