Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Advanced Modeling and Optimization of Manufacturing Processes

Advanced Modeling and Optimization of Manufacturing Processes Author R. Venkata Rao
ISBN-10 0857290150
Release 2010-12-01
Pages 380
Download Link Click Here

Advanced Modeling and Optimization of Manufacturing Processes presents a comprehensive review of the latest international research and development trends in the modeling and optimization of manufacturing processes, with a focus on machining. It uses examples of various manufacturing processes to demonstrate advanced modeling and optimization techniques. Both basic and advanced concepts are presented for various manufacturing processes, mathematical models, traditional and non-traditional optimization techniques, and real case studies. The results of the application of the proposed methods are also covered and the book highlights the most useful modeling and optimization strategies for achieving best process performance. In addition to covering the advanced modeling, optimization and environmental aspects of machining processes, Advanced Modeling and Optimization of Manufacturing Processes also covers the latest technological advances, including rapid prototyping and tooling, micromachining, and nano-finishing. Advanced Modeling and Optimization of Manufacturing Processes is written for designers and manufacturing engineers who are responsible for the technical aspects of product realization, as it presents new models and optimization techniques to make their work easier, more efficient, and more effective. It is also a useful text for practitioners, researchers, and advanced students in mechanical, industrial, and manufacturing engineering.



Mechanical Design Optimization Using Advanced Optimization Techniques

Mechanical Design Optimization Using Advanced Optimization Techniques Author R. Venkata Rao
ISBN-10 9781447127482
Release 2012-01-14
Pages 320
Download Link Click Here

Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational costs. Mechanical Design Optimization Using Advanced Optimization Techniques presents a comprehensive review on latest research and development trends for design optimization of mechanical elements and devices. Using examples of various mechanical elements and devices, the possibilities for design optimization with advanced optimization techniques are demonstrated. Basic and advanced concepts of traditional and advanced optimization techniques are presented, along with real case studies, results of applications of the proposed techniques, and the best optimization strategies to achieve best performance are highlighted. Furthermore, a novel advanced optimization method named teaching-learning-based optimization (TLBO) is presented in this book and this method shows better performance with less computational effort for the large scale problems. Mechanical Design Optimization Using Advanced Optimization Techniques is intended for designers, practitioners, managers, institutes involved in design related projects, applied research workers, academics, and graduate students in mechanical and industrial engineering and will be useful to the industrial product designers for realizing a product as it presents new models and optimization techniques to make tasks easier, logical, efficient and effective. .



Laser Based Additive Manufacturing of Metal Parts

Laser Based Additive Manufacturing of Metal Parts Author Linkan Bian
ISBN-10 9781351647489
Release 2017-08-09
Pages 328
Download Link Click Here

Laser-Based Additive Manufacturing (LBAM) technologies, hailed by some as the "third industrial revolution," can increase product performance, while reducing time-to-market and manufacturing costs. This book is a comprehensive look at new technologies in LBAM of metal parts, covering topics such as mechanical properties, microstructural features, thermal behavior and solidification, process parameters, optimization and control, uncertainty quantification, and more. The book is aimed at addressing the needs of a diverse cross-section of engineers and professionals.



Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods

Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods Author R. Venkata Rao
ISBN-10 9781447143758
Release 2012-08-27
Pages 294
Download Link Click Here

Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods presents the concepts and details of applications of MADM methods. A range of methods are covered including Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), VIšekriterijumsko KOmpromisno Rangiranje (VIKOR), Data Envelopment Analysis (DEA), Preference Ranking METHod for Enrichment Evaluations (PROMETHEE), ELimination Et Choix Traduisant la Realité (ELECTRE), COmplex PRoportional ASsessment (COPRAS), Grey Relational Analysis (GRA), UTility Additive (UTA), and Ordered Weighted Averaging (OWA). The existing MADM methods are improved upon and three novel multiple attribute decision making methods for solving the decision making problems of the manufacturing environment are proposed. The concept of integrated weights is introduced in the proposed subjective and objective integrated weights (SOIW) method and the weighted Euclidean distance based approach (WEDBA) to consider both the decision maker’s subjective preferences as well as the distribution of the attributes data of the decision matrix. These methods, which use fuzzy logic to convert the qualitative attributes into the quantitative attributes, are supported by various real-world application examples. Also, computer codes for AHP, TOPSIS, DEA, PROMETHEE, ELECTRE, COPRAS, and SOIW methods are included. This comprehensive coverage makes Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods a key reference for the designers, manufacturing engineers, practitioners, managers, institutes involved in both design and manufacturing related projects. It is also an ideal study resource for applied research workers, academicians, and students in mechanical and industrial engineering.



Advances on Mechanics Design Engineering and Manufacturing

Advances on Mechanics  Design Engineering and Manufacturing Author Benoit Eynard
ISBN-10 9783319457819
Release 2016-09-02
Pages 1245
Download Link Click Here

This book gathers papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed, and future interdisciplinary collaborations.



Advances in 3D Printing Additive Manufacturing Technologies

Advances in 3D Printing   Additive Manufacturing Technologies Author David Ian Wimpenny
ISBN-10 9789811008122
Release 2016-08-23
Pages 186
Download Link Click Here

This edited volume comprises select chapters on advanced technologies for 3D printing and additive manufacturing and how these technologies have changed the face of direct, digital technologies for rapid production of models, prototypes and patterns. Because of its wide applications, 3D printing and additive manufacturing technology has become a powerful new industrial revolution in the field of manufacturing. The evolution of 3D printing and additive manufacturing technologies has changed design, engineering and manufacturing processes across industries such as consumer products, aerospace, medical devices and automotives. The objective of this book is to help designers, R&D personnel, and practicing engineers understand the state-of-the-art developments in the field of 3D Printing and Additive Manufacturing.



Mechanical Design Optimization Using Advanced Optimization Techniques

Mechanical Design Optimization Using Advanced Optimization Techniques Author R. Venkata Rao
ISBN-10 9781447127475
Release 2012-01-15
Pages 320
Download Link Click Here

Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational costs. Mechanical Design Optimization Using Advanced Optimization Techniques presents a comprehensive review on latest research and development trends for design optimization of mechanical elements and devices. Using examples of various mechanical elements and devices, the possibilities for design optimization with advanced optimization techniques are demonstrated. Basic and advanced concepts of traditional and advanced optimization techniques are presented, along with real case studies, results of applications of the proposed techniques, and the best optimization strategies to achieve best performance are highlighted. Furthermore, a novel advanced optimization method named teaching-learning-based optimization (TLBO) is presented in this book and this method shows better performance with less computational effort for the large scale problems. Mechanical Design Optimization Using Advanced Optimization Techniques is intended for designers, practitioners, managers, institutes involved in design related projects, applied research workers, academics, and graduate students in mechanical and industrial engineering and will be useful to the industrial product designers for realizing a product as it presents new models and optimization techniques to make tasks easier, logical, efficient and effective. .



Integrative Production Technology

Integrative Production Technology Author Christian Brecher
ISBN-10 9783319474526
Release 2016-12-20
Pages 1104
Download Link Click Here

This contributed volume contains the research results of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”, funded by the German Research Society (DFG). The approach to the topic is genuinely interdisciplinary, covering insights from fields such as engineering, material sciences, economics and social sciences. The book contains coherent deterministic models for integrative product creation chains as well as harmonized cybernetic models of production systems. The content is structured into five sections: Integrative Production Technology, Individualized Production, Virtual Production Systems, Integrated Technologies, Self-Optimizing Production Systems and Collaboration Productivity.The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students.



Electromagnetic Vibration Energy Harvesting Devices

Electromagnetic Vibration Energy Harvesting Devices Author Dirk Spreemann
ISBN-10 9789400729445
Release 2012-02-15
Pages 198
Download Link Click Here

Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the designer of electromagnetic vibration transducers who wishes to have a greater in-depth understanding for maximizing the output performance.



Advances in Design

Advances in Design Author Hoda A. ElMaraghy
ISBN-10 1846280044
Release 2006
Pages 576
Download Link Click Here

Advances in Design examines recent advances and innovations in product design paradigms, methods, tools and applications. It presents fifty-two selected papers which were presented at the 14th CIRP International Design Seminar held in May 2004 as well as the invited keynote papers. Dr. Waguih ElMaraghy was the conference Chair and Dr. Hoda ElMaraghy was on the program committee. The International Institution for Production Research (CIRP), founded in 1951, is the top production engineering research college worldwide. The CIRP is subdivided into Scientific and Technical Committees (STC’s) which are responsible for coordinating cutting-edge research as well as holding highly regarded annual international seminars to disseminate the results. The CIRP "Design" STC meeting is the forum in which the latest developments in the design field are presented and discussed. The Springer Series in Advanced Manufacturing publishes the best teaching and reference material to support students, educators and practitioners in manufacturing technology and management. This international series includes advanced textbooks, research monographs, edited works and conference proceedings covering all subjects in advanced manufacturing. The series focuses on new topics of interest, new treatments of more traditional areas and coverage of the applications of information and communication technology (ICT) in manufacturing.



Precision Product Process Design and Optimization

Precision Product Process Design and Optimization Author Sanjay S. Pande
ISBN-10 9789811087677
Release 2018-04-18
Pages 434
Download Link Click Here

This book introduces readers to various tools and techniques for the design of precision, miniature products, assemblies and associated manufacturing processes. In particular, it focuses on precision mechanisms, robotic devices and their control strategies, together with case studies. In the context of manufacturing process, the book highlights micro/nano machining/forming processes using non-conventional energy sources such as lasers, EDM (electro-discharge machining), ECM (electrochemical machining), etc. Techniques for achieving optimum performance in process modeling, simulation and optimization are presented. The applications of various research tools such as FEM (finite element method), neural networks, genetic algorithms, etc. to product-process design and optimization are illustrated through case studies. The state-of-the-art material presented here provides valuable directions for product development and future research work in this area. The contents of this book will be of use to researchers and industry professionals alike.



Virtual Manufacturing

Virtual Manufacturing Author Wasim Ahmed Khan
ISBN-10 0857291866
Release 2011-02-16
Pages 802
Download Link Click Here

Virtual Manufacturing presents a novel concept of combining human computer interfaces with virtual reality for discrete and continuous manufacturing systems. The authors address the relevant concepts of manufacturing engineering, virtual reality, and computer science and engineering, before embarking on a description of the methodology for building augmented reality for manufacturing processes and manufacturing systems. Virtual Manufacturing is centered on the description of the development of augmented reality models for a range of processes based on CNC, PLC, SCADA, mechatronics and on embedded systems. Further discussions address the use of augmented reality for developing augmented reality models to control contemporary manufacturing systems and to acquire micro- and macro-level decision parameters for managers to boost profitability of their manufacturing systems. Guiding readers through the building of their own virtual factory software, Virtual Manufacturing comes with access to online files and software that will enable readers to create a virtual factory, operate it and experiment with it. This is a valuable source of information with a useful toolkit for anyone interested in virtual manufacturing, including advanced undergraduate students, postgraduate students and researchers.



Transdisciplinary Engineering A Paradigm Shift

Transdisciplinary Engineering  A Paradigm Shift Author C.-H. Chen
ISBN-10 9781614997795
Release 2017-07-20
Pages 1092
Download Link Click Here

Concurrent Engineering is based on the concept that different phases of a product life cycle should be conducted concurrently and initiated as early as possible within the Product Creation Process (PCP). Its main goal is to increase the efficiency and effectiveness of the PCP and reduce errors in the later stages, and to incorporate considerations for the full lifecycle, through-life operations, and environmental issues of the product. It has become the substantive basic methodology in many industries, and the initial basic concepts have matured and become the foundation of many new ideas, methodologies, initiatives, approaches and tools. This book presents the proceedings of the 24th ISPE Inc. International Conference on Transdisciplinary (formerly: Concurrent) Engineering (TE 2017), held in Singapore, in July 2017. The 120 peer-reviewed papers in the book are divided into 16 sections: air transport and traffic operations and management; risk-aware supply chain intelligence; product innovation and marketing management; human factors in design; human engineering; design methods and tools; decision supporting tools and methods; concurrent engineering; knowledge-based engineering; collaborative engineering; engineering for sustainability; service design; digital manufacturing; design automation; artificial intelligence and data analytics; smart systems and the Internet of Things. The book provides a comprehensive overview of recent advances in transdisciplinary concurrent engineering research and applications, and will be of interest to researchers, design practitioners and educators working in the field.



Teaching Learning Based Optimization Algorithm

Teaching Learning Based Optimization Algorithm Author R. Venkata Rao
ISBN-10 9783319227320
Release 2015-11-14
Pages 284
Download Link Click Here

Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.



Intelligent Scheduling of Robotic Flexible Assembly Cells

Intelligent Scheduling of Robotic Flexible Assembly Cells Author Khalid Karam Abd
ISBN-10 9783319262963
Release 2015-11-08
Pages 164
Download Link Click Here

This book focuses on the design of Robotic Flexible Assembly Cell (RFAC) with multi-robots. Its main contribution consists of a new effective strategy for scheduling RFAC in a multi-product assembly environment, in which dynamic status and multi-objective optimization problems occur. The developed strategy, which is based on a combination of advanced solution approaches such as simulation, fuzzy logic, system modeling and the Taguchi optimization method, fills an important knowledge gap in the current literature and paves the way for future research towards the goal of employing flexible assembly systems as effectively as possible despite the complexity of their scheduling.



Advanced Machining and Manufacturing Processes

Advanced Machining and Manufacturing Processes Author Kaushik Kumar
ISBN-10 9783319760759
Release 2018-04-17
Pages 201
Download Link Click Here

This book covers the various advanced manufacturing processes employed by manufacturing industries to improve their productivity in terms of socio-economic development. The authors present automated conventional and non-conventional machining techniques as well as virtual machining principles and techniques. Material removal by mechanical, chemical, thermal and electrochemical processes are described in detail. A glossary of key concepts is attached at end of the book.



Numerical Optimization

Numerical Optimization Author Jorge Nocedal
ISBN-10 9780387400655
Release 2006-12-11
Pages 664
Download Link Click Here

Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.