Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Algebraic Approximation A Guide to Past and Current Solutions

Algebraic Approximation  A Guide to Past and Current Solutions Author Jorge Bustamante
ISBN-10 9783034801942
Release 2011-11-15
Pages 205
Download Link Click Here

This book contains an exposition of several results related with direct and converse theorems in the theory of approximation by algebraic polynomials in a finite interval. In addition, some facts concerning trigonometric approximation that are necessary for motivation and comparisons are included. The selection of papers that are referenced and discussed document some trends in polynomial approximation from the 1950s to the present day.

Frontiers in Fractional Calculus

Frontiers in Fractional Calculus Author Sachin Bhalekar
ISBN-10 9781681085999
Release 2018-03-21
Pages 381
Download Link Click Here

This book brings together eleven topics on different aspects of fractional calculus in a single volume. It provides readers the basic knowledge of fractional calculus and introduces advanced topics and applications. The information in the book is presented in four parts: Fractional Diffusion Equations: (i) solutions of fractional diffusion equations using wavelet methods, (ii) the maximum principle for time fractional diffusion equations, (iii) nonlinear sub-diffusion equations. Mathematical Analysis: (i) shifted Jacobi polynomials for solving and identifying coupled fractional delay differential equations, (ii) the monotone iteration principle in the theory of Hadamard fractional delay differential equations, (iii) dynamics of fractional order modified Bhalekar-Gejji System, (iv) Grunwald-Letnikov derivatives. Computational Techniques: GPU computing of special mathematical functions used in fractional calculus. Reviews: (i) the popular iterative method NIM, (ii) fractional derivative with non-singular kernels, (iii) some open problems in fractional order nonlinear system This is a useful reference for researchers and graduate level mathematics students seeking knowledge about of fractional calculus and applied mathematics.

Handbook of Linear Algebra Second Edition

Handbook of Linear Algebra  Second Edition Author Leslie Hogben
ISBN-10 9781466507289
Release 2013-11-26
Pages 1904
Download Link Click Here

With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters. New to the Second Edition Separate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of matrices, generalized inverses, matrices over finite fields, invariant subspaces, representations of quivers, and spectral sets New chapters on combinatorial matrix theory topics, such as tournaments, the minimum rank problem, and spectral graph theory, as well as numerical linear algebra topics, including algorithms for structured matrix computations, stability of structured matrix computations, and nonlinear eigenvalue problems More chapters on applications of linear algebra, including epidemiology and quantum error correction New chapter on using the free and open source software system Sage for linear algebra Additional sections in the chapters on sign pattern matrices and applications to geometry Conjectures and open problems in most chapters on advanced topics Highly praised as a valuable resource for anyone who uses linear algebra, the first edition covered virtually all aspects of linear algebra and its applications. This edition continues to encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, and applications of linear algebra to various disciplines while also covering up-to-date software packages for linear algebra computations.

Subject Guide to Books in Print

Subject Guide to Books in Print Author
ISBN-10 STANFORD:36105025888533
Release 2003
Download Link Click Here

Subject Guide to Books in Print has been writing in one form or another for most of life. You can find so many inspiration from Subject Guide to Books in Print also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Subject Guide to Books in Print book for free.

Guide to programs

Guide to programs Author National Science Foundation (U.S.)
ISBN-10 UIUC:30112105092156
Release 1993
Download Link Click Here

Guide to programs has been writing in one form or another for most of life. You can find so many inspiration from Guide to programs also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Guide to programs book for free.

Nonlinear Stochastic Operator Equations

Nonlinear Stochastic Operator Equations Author George Adomian
ISBN-10 9781483259093
Release 2014-05-09
Pages 304
Download Link Click Here

Nonlinear Stochastic Operator Equations deals with realistic solutions of the nonlinear stochastic equations arising from the modeling of frontier problems in many fields of science. This book also discusses a wide class of equations to provide modeling of problems concerning physics, engineering, operations research, systems analysis, biology, medicine. This text discusses operator equations and the decomposition method. This book also explains the limitations, restrictions and assumptions made in differential equations involving stochastic process coefficients (the stochastic operator case), which yield results very different from the needs of the actual physical problem. Real-world application of mathematics to actual physical problems, requires making a reasonable model that is both realistic and solvable. The decomposition approach or model is an approximation method to solve a wide range of problems. This book explains an inherent feature of real systems—known as nonlinear behavior—that occurs frequently in nuclear reactors, in physiological systems, or in cellular growth. This text also discusses stochastic operator equations with linear boundary conditions. This book is intended for students with a mathematics background, particularly senior undergraduate and graduate students of advanced mathematics, of the physical or engineering sciences.

NSF Guide to Programs

NSF Guide to Programs Author National Science Foundation (U.S.)
ISBN-10 UOM:39015020647395
Release 1991
Download Link Click Here

NSF Guide to Programs has been writing in one form or another for most of life. You can find so many inspiration from NSF Guide to Programs also informative, and entertaining. Click DOWNLOAD or Read Online button to get full NSF Guide to Programs book for free.

Optimization Methods in Finance

Optimization Methods in Finance Author Gérard Cornuéjols
ISBN-10 9781107056749
Release 2018-08-09
Pages 347
Download Link Click Here

Full treatment, from model formulation to computational implementation, of optimization techniques that solve central problems in finance.

The Mathematical Sciences in 2025

The Mathematical Sciences in 2025 Author Committee on the Mathematical Sciences in 2025
ISBN-10 9780309284578
Release 2013-05-13
Pages 205
Download Link Click Here

The mathematical sciences are part of nearly all aspects of everyday life--the discipline has underpinned such beneficial modern capabilities as Internet search, medical imaging, computer animation, numerical weather predictions, and all types of digital communications. The Mathematical Sciences in 2025 examines the current state of the mathematical sciences and explores the changes needed for the discipline to be in a strong position and able to maximize its contribution to the nation in 2025. It finds the vitality of the discipline excellent and that it contributes in expanding ways to most areas of science and engineering, as well as to the nation as a whole, and recommends that training for future generations of mathematical scientists should be re-assessed in light of the increasingly cross-disciplinary nature of the mathematical sciences. In addition, because of the valuable interplay between ideas and people from all parts of the mathematical sciences, the report emphasizes that universities and the government need to continue to invest in the full spectrum of the mathematical sciences in order for the whole enterprise to continue to flourish long-term.


Bulletin Author
ISBN-10 UOM:39015036503822
Release 1994
Download Link Click Here

Bulletin has been writing in one form or another for most of life. You can find so many inspiration from Bulletin also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Bulletin book for free.

A Mathematical Introduction to Compressive Sensing

A Mathematical Introduction to Compressive Sensing Author Simon Foucart
ISBN-10 9780817649487
Release 2013-08-13
Pages 625
Download Link Click Here

At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

Tools of the Trade

Tools of the Trade Author Paul Sally
ISBN-10 9780821846346
Release 2008
Pages 193
Download Link Click Here

This book provides a transition from the formula-full aspects of the beginning study of college level mathematics to the rich and creative world of more advanced topics. It is designed to assist the student in mastering the techniques of analysis and proof that are required to do mathematics. Along with the standard material such as linear algebra, construction of the real numbers via Cauchy sequences, metric spaces and complete metric spaces, there are three projects at the end of each chapter that form an integral part of the text. These projects include a detailed discussion of topics such as group theory, convergence of infinite series, decimal expansions of real numbers, point set topology and topological groups. They are carefully designed to guide the student through the subject matter. Together with numerous exercises included in the book, these projects may be used as part of the regular classroom presentation, as self-study projects for students, or for Inquiry Based Learning activities presented by the students.

Numerical Continuation Methods

Numerical Continuation Methods Author Eugene L. Allgower
ISBN-10 9783642612572
Release 2012-12-06
Pages 388
Download Link Click Here

Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.

Iterative Methods for Optimization

Iterative Methods for Optimization Author C. T. Kelley
ISBN-10 161197092X
Release 1999
Pages 180
Download Link Click Here

This book presents a carefully selected group of methods for unconstrained and bound constrained optimization problems and analyzes them in depth both theoretically and algorithmically. It focuses on clarity in algorithmic description and analysis rather than generality, and while it provides pointers to the literature for the most general theoretical results and robust software, the author thinks it is more important that readers have a complete understanding of special cases that convey essential ideas. A companion to Kelley's book, Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995), this book contains many exercises and examples and can be used as a text, a tutorial for self-study, or a reference. Iterative Methods for Optimization does more than cover traditional gradient-based optimization: it is the first book to treat sampling methods, including the Hooke-Jeeves, implicit filtering, MDS, and Nelder-Mead schemes in a unified way, and also the first book to make connections between sampling methods and the traditional gradient-methods. Each of the main algorithms in the text is described in pseudocode, and a collection of MATLAB codes is available. Thus, readers can experiment with the algorithms in an easy way as well as implement them in other languages.

A Multigrid Tutorial

A Multigrid Tutorial Author William L. Briggs
ISBN-10 9780898714623
Release 2000-07-01
Pages 193
Download Link Click Here

Mathematics of Computing -- Numerical Analysis.

How to Solve It

How to Solve It Author G. Polya
ISBN-10 9781400828678
Release 2014-10-26
Pages 288
Download Link Click Here

A perennial bestseller by eminent mathematician G. Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out—from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft—indeed, brilliant—instructions on stripping away irrelevancies and going straight to the heart of the problem.

Computer Vision

Computer Vision Author Richard Szeliski
ISBN-10 1848829469
Release 2010-11-05
Pages 812
Download Link Click Here

Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.