Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras Author Alexander Kirillov
ISBN-10 9780521889698
Release 2008-07-31
Pages 222
Download Link Click Here

This book is an introduction to semisimple Lie algebras; concise and informal, with numerous exercises and examples.



Analysis on Lie Groups

Analysis on Lie Groups Author Jacques Faraut
ISBN-10 9781139471473
Release 2008-05-22
Pages
Download Link Click Here

The subject of analysis on Lie groups comprises an eclectic group of topics which can be treated from many different perspectives. This self-contained text concentrates on the perspective of analysis, to the topics and methods of non-commutative harmonic analysis, assuming only elementary knowledge of linear algebra and basic differential calculus. The author avoids unessential technical discussions and instead describes in detail many interesting examples, including formulae which have not previously appeared in book form. Topics covered include the Haar measure and invariant integration, spherical harmonics, Fourier analysis and the heat equation, Poisson kernel, the Laplace equation and harmonic functions. Perfect for advanced undergraduates and graduates in geometric analysis, harmonic analysis and representation theory, the tools developed will also be useful for specialists in stochastic calculation and the statisticians. With numerous exercises and worked examples, the text is ideal for a graduate course on analysis on Lie groups.



Lie Algebras of Finite and Affine Type

Lie Algebras of Finite and Affine Type Author Roger William Carter
ISBN-10 0521851386
Release 2005-10-27
Pages 632
Download Link Click Here

This book provides a thorough but relaxed mathematical treatment of Lie algebras.



Introduction to Lie Algebras

Introduction to Lie Algebras Author K. Erdmann
ISBN-10 9781846284908
Release 2006-09-28
Pages 251
Download Link Click Here

Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.



An Introduction to Harmonic Analysis on Semisimple Lie Groups

An Introduction to Harmonic Analysis on Semisimple Lie Groups Author V. S. Varadarajan
ISBN-10 0521663628
Release 1989
Pages 316
Download Link Click Here

Now in paperback, this graduate-level textbook is an excellent introduction to the representation theory of semi-simple Lie groups. Professor Varadarajan emphasizes the development of central themes in the context of special examples. He begins with an account of compact groups and discusses the Harish-Chandra modules of SL(2,R) and SL(2,C). Subsequent chapters introduce the Plancherel formula and Schwartz spaces, and show how these lead to the Harish-Chandra theory of Eisenstein integrals. The final sections consider the irreducible characters of semi-simple Lie groups, and include explicit calculations of SL(2,R). The book concludes with appendices sketching some basic topics and with a comprehensive guide to further reading. This superb volume is highly suitable for students in algebra and analysis, and for mathematicians requiring a readable account of the topic.



Introduction to Lie Algebras and Representation Theory

Introduction to Lie Algebras and Representation Theory Author J.E. Humphreys
ISBN-10 9781461263982
Release 2012-12-06
Pages 173
Download Link Click Here

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.



Abstract Lie Algebras

Abstract Lie Algebras Author David J Winter
ISBN-10 9780486783468
Release 2013-12-01
Pages 160
Download Link Click Here

Solid but concise, this account of Lie algebra emphasizes the theory's simplicity and offers new approaches to major theorems. Author David J. Winter, a Professor of Mathematics at the University of Michigan, also presents a general, extensive treatment of Cartan and related Lie subalgebras over arbitrary fields. Preliminary material covers modules and nonassociate algebras, followed by a compact, self-contained development of the theory of Lie algebras of characteristic 0. Topics include solvable and nilpotent Lie algebras, Cartan subalgebras, and Levi's radical splitting theorem and the complete reducibility of representations of semisimple Lie algebras. Additional subjects include the isomorphism theorem for semisimple Lie algebras and their irreducible modules, automorphism of Lie algebras, and the conjugacy of Cartan subalgebras and Borel subalgebras. An extensive theory of Cartan and related subalgebras of Lie algebras over arbitrary fields is developed in the final chapter, and an appendix offers background on the Zariski topology.



Lie Groups Lie Algebras and Their Representations

Lie Groups  Lie Algebras  and Their Representations Author V.S. Varadarajan
ISBN-10 9781461211266
Release 2013-04-17
Pages 434
Download Link Click Here

This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task.



Lectures on Lie Groups and Lie Algebras

Lectures on Lie Groups and Lie Algebras Author Roger William Carter
ISBN-10 0521499224
Release 1995-08-17
Pages 190
Download Link Click Here

An excellent introduction to the theory of Lie groups and Lie algebras.



An Introduction to Homological Algebra

An Introduction to Homological Algebra Author Charles A. Weibel
ISBN-10 9781139643078
Release 1995-10-27
Pages
Download Link Click Here

The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.



Reflection Groups and Coxeter Groups

Reflection Groups and Coxeter Groups Author James E. Humphreys
ISBN-10 0521436133
Release 1992-10-01
Pages 204
Download Link Click Here

This graduate textbook presents a concrete and up-to-date introduction to the theory of Coxeter groups. The book is self-contained, making it suitable either for courses and seminars or for self-study. The first part is devoted to establishing concrete examples. Finite reflection groups acting on Euclidean spaces are discussed, and the first part ends with the construction of the affine Weyl groups, a class of Coxeter groups that plays a major role in Lie theory. The second part (which is logically independent of, but motivated by, the first) develops from scratch the properties of Coxeter groups in general, including the Bruhat ordering and the seminal work of Kazhdan and Lusztig on representations of Hecke algebras associated with Coxeter groups is introduced. Finally a number of interesting complementary topics as well as connections with Lie theory are sketched. The book concludes with an extensive bibliography on Coxeter groups and their applications.



Lie Groups Physics and Geometry

Lie Groups  Physics  and Geometry Author Robert Gilmore
ISBN-10 9781139469074
Release 2008-01-17
Pages
Download Link Click Here

Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.



Linear Algebraic Groups and Finite Groups of Lie Type

Linear Algebraic Groups and Finite Groups of Lie Type Author Gunter Malle
ISBN-10 9781139499538
Release 2011-09-08
Pages
Download Link Click Here

Originating from a summer school taught by the authors, this concise treatment includes many of the main results in the area. An introductory chapter describes the fundamental results on linear algebraic groups, culminating in the classification of semisimple groups. The second chapter introduces more specialized topics in the subgroup structure of semisimple groups and describes the classification of the maximal subgroups of the simple algebraic groups. The authors then systematically develop the subgroup structure of finite groups of Lie type as a consequence of the structural results on algebraic groups. This approach will help students to understand the relationship between these two classes of groups. The book covers many topics that are central to the subject, but missing from existing textbooks. The authors provide numerous instructive exercises and examples for those who are learning the subject as well as more advanced topics for research students working in related areas.



Representations of Groups

Representations of Groups Author Klaus Lux
ISBN-10 9781139489188
Release 2010-07-01
Pages
Download Link Click Here

The representation theory of finite groups has seen rapid growth in recent years with the development of efficient algorithms and computer algebra systems. This is the first book to provide an introduction to the ordinary and modular representation theory of finite groups with special emphasis on the computational aspects of the subject. Evolving from courses taught at Aachen University, this well-paced text is ideal for graduate-level study. The authors provide over 200 exercises, both theoretical and computational, and include worked examples using the computer algebra system GAP. These make the abstract theory tangible and engage students in real hands-on work. GAP is freely available from www.gap-system.org and readers can download source code and solutions to selected exercises from the book's web page.



Lie Groups

Lie Groups Author Daniel Bump
ISBN-10 9781461480242
Release 2013-10-01
Pages 551
Download Link Click Here

This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(n) × GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations.



Symmetries Lie Algebras and Representations

Symmetries  Lie Algebras and Representations Author Jürgen Fuchs
ISBN-10 0521541190
Release 2003-10-07
Pages 464
Download Link Click Here

This book gives an introduction to Lie algebras and their representations. Lie algebras have many applications in mathematics and physics, and any physicist or applied mathematician must nowadays be well acquainted with them.



Affine Lie Algebras and Quantum Groups

Affine Lie Algebras and Quantum Groups Author Jürgen Fuchs
ISBN-10 052148412X
Release 1995-03-09
Pages 433
Download Link Click Here

This is an introduction to the theory of affine Lie algebras and to the theory of quantum groups. It is unique in discussing these two subjects in a unified manner, which is made possible by discussing their respective applications in conformal field theory. The description of affine algebras covers the classification problem, the connection with loop algebras, and representation theory including modular properties. The necessary background from the theory of semisimple Lie algebras is also provided. The discussion of quantum groups concentrates on deformed enveloping algebras and their representation theory, but other aspects such as R-matrices and matrix quantum groups are also dealt with.