Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

An Introduction to the Mathematics of Money

An Introduction to the Mathematics of Money Author David Lovelock
ISBN-10 9780387681115
Release 2007-04-05
Pages 300
Download Link Click Here

This is an undergraduate textbook on the basic aspects of personal savings and investing with a balanced mix of mathematical rigor and economic intuition. It uses routine financial calculations as the motivation and basis for tools of elementary real analysis rather than taking the latter as given. Proofs using induction, recurrence relations and proofs by contradiction are covered. Inequalities such as the Arithmetic-Geometric Mean Inequality and the Cauchy-Schwarz Inequality are used. Basic topics in probability and statistics are presented. The student is introduced to elements of saving and investing that are of life-long practical use. These include savings and checking accounts, certificates of deposit, student loans, credit cards, mortgages, buying and selling bonds, and buying and selling stocks. The book is self contained and accessible. The authors follow a systematic pattern for each chapter including a variety of examples and exercises ensuring that the student deals with realities, rather than theoretical idealizations. It is suitable for courses in mathematics, investing, banking, financial engineering, and related topics.



Introduction to the Foundations of Applied Mathematics

Introduction to the Foundations of Applied Mathematics Author Mark H. Holmes
ISBN-10 9780387877655
Release 2009-06-18
Pages 468
Download Link Click Here

FOAM. This acronym has been used for over ?fty years at Rensselaer to designate an upper-division course entitled, Foundations of Applied Ma- ematics. This course was started by George Handelman in 1956, when he came to Rensselaer from the Carnegie Institute of Technology. His objective was to closely integrate mathematical and physical reasoning, and in the p- cess enable students to obtain a qualitative understanding of the world we live in. FOAM was soon taken over by a young faculty member, Lee Segel. About this time a similar course, Introduction to Applied Mathematics, was introduced by Chia-Ch’iao Lin at the Massachusetts Institute of Technology. Together Lin and Segel, with help from Handelman, produced one of the landmark textbooks in applied mathematics, Mathematics Applied to - terministic Problems in the Natural Sciences. This was originally published in 1974, and republished in 1988 by the Society for Industrial and Applied Mathematics, in their Classics Series. This textbook comes from the author teaching FOAM over the last few years. In this sense, it is an updated version of the Lin and Segel textbook.



Mathematical Models in Population Biology and Epidemiology

Mathematical Models in Population Biology and Epidemiology Author Fred Brauer
ISBN-10 9781475735161
Release 2013-03-09
Pages 417
Download Link Click Here

The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.



Solitons

Solitons Author P. G. Drazin
ISBN-10 0521336554
Release 1989-02-09
Pages 226
Download Link Click Here

This textbook is an introduction to the theory of solitons in the physical sciences.



Introduction to Applied Mathematics

Introduction to Applied Mathematics Author Lawrence Sirovich
ISBN-10 9781461245803
Release 2013-11-21
Pages 370
Download Link Click Here

From the Preface: "The material in this book is based on notes for a course which I gave several times at Brown University. The target of the course was juniors and seniors majoring in applied mathematics, engineering and other sciences. My basic goal in the course was to teach standard methods, or what I regard as a basic "bag of tricks". In my opinion the material contained here, for the most part, does not depart widely from traditional subject matter. One such departure is the discussion of discrete linear systems. Besides being interesting in its own right, this topic is included because the treatment of such systems leads naturally to the use of discrete Fourier series, discrete Fourier transforms, and their extension, the Z-transform. On making the transition to continuous systems we derive their continuous analogues, viz., Fourier series, Fourier transforms, Fourier integrals and Laplace transforms. A main advantage to the approach taken is that a wide variety of techniques are seen to result from one or two very simple but central ideas. Above all, this course is intended as being one which gives the student a "can-do" frame of mind about mathematics. Students should be given confidence in using mathematics and not be made fearful of it. I have, therefore, forgone the theorem-proof format for a more informal style. Finally, a concerted effort was made to present an assortment of examples from diverse applications with the hope of attracting the interest of the student, and an equally dedicated effort was made to be kind to the reader."



A Modern Introduction to the Mathematical Theory of Water Waves

A Modern Introduction to the Mathematical Theory of Water Waves Author R. S. Johnson
ISBN-10 052159832X
Release 1997-10-28
Pages 445
Download Link Click Here

This text considers classical and modern problems in linear and non-linear water-wave theory.



Introduction to Optimization

Introduction to Optimization Author Pablo Pedregal
ISBN-10 9780387216805
Release 2006-04-18
Pages 246
Download Link Click Here

This undergraduate textbook introduces students of science and engineering to the fascinating field of optimization. It is a unique book that brings together the subfields of mathematical programming, variational calculus, and optimal control, thus giving students an overall view of all aspects of optimization in a single reference. As a primer on optimization, its main goal is to provide a succinct and accessible introduction to linear programming, nonlinear programming, numerical optimization algorithms, variational problems, dynamic programming, and optimal control. Prerequisites have been kept to a minimum, although a basic knowledge of calculus, linear algebra, and differential equations is assumed.



An Introduction to Stochastic Dynamics

An Introduction to Stochastic Dynamics Author Jinqiao Duan
ISBN-10 9781107075399
Release 2015-04-13
Pages 307
Download Link Click Here

An accessible introduction for applied mathematicians to concepts and techniques for describing, quantifying, and understanding dynamics under uncertainty.



Introduction to Uncertainty Quantification

Introduction to Uncertainty Quantification Author T.J. Sullivan
ISBN-10 9783319233956
Release 2015-12-14
Pages 342
Download Link Click Here

This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favorite problems to understand their strengths and weaknesses, also making the text suitable for a self-study. Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation and numerous application areas in science and engineering. This text is designed as an introduction to UQ for senior undergraduate and graduate students with a mathematical or statistical background and also for researchers from the mathematical sciences or from applications areas who are interested in the field. T. J. Sullivan was Warwick Zeeman Lecturer at the Mathematics Institute of the University of Warwick, United Kingdom, from 2012 to 2015. Since 2015, he is Junior Professor of Applied Mathematics at the Free University of Berlin, Germany, with specialism in Uncertainty and Risk Quantification.



Introduction to Mathematical Systems Theory

Introduction to Mathematical Systems Theory Author J.C. Willems
ISBN-10 9781475729535
Release 2013-11-11
Pages 424
Download Link Click Here

Using the behavioural approach to mathematical modelling, this book views a system as a dynamical relation between manifest and latent variables. The emphasis is on dynamical systems that are represented by systems of linear constant coefficients. The first part analyses the structure of the set of trajectories generated by such dynamical systems, and derives the conditions for two systems of differential equations to be equivalent in the sense that they define the same behaviour. In addition the memory structure of the system is analysed through state space models. The second part of the book is devoted to a number of important system properties, notably controllability, observability, and stability. In the third part, control problems are considered, in particular stabilisation and pole placement questions. Suitable for advanced undergraduate or beginning graduate students in mathematics and engineering, this text contains numerous exercises, including simulation problems, and examples, notably of mechanical systems and electrical circuits.



Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos Author Stephen Wiggins
ISBN-10 9781475740677
Release 2013-03-09
Pages 672
Download Link Click Here

This volume is an introduction to applied nonlinear dynamics and chaos. The emphasis is on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains an extensive bibliography and a detailed glossary of terms.



Data Assimilation

Data Assimilation Author Kody Law
ISBN-10 9783319203256
Release 2015-09-05
Pages 242
Download Link Click Here

This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation, covering both theoretical and computational approaches. Specifically the authors develop a unified mathematical framework in which a Bayesian formulation of the problem provides the bedrock for the derivation, development and analysis of algorithms; the many examples used in the text, together with the algorithms which are introduced and discussed, are all illustrated by the MATLAB software detailed in the book and made freely available online. The book is organized into nine chapters: the first contains a brief introduction to the mathematical tools around which the material is organized; the next four are concerned with discrete time dynamical systems and discrete time data; the last four are concerned with continuous time dynamical systems and continuous time data and are organized analogously to the corresponding discrete time chapters. This book is aimed at mathematical researchers interested in a systematic development of this interdisciplinary field, and at researchers from the geosciences, and a variety of other scientific fields, who use tools from data assimilation to combine data with time-dependent models. The numerous examples and illustrations make understanding of the theoretical underpinnings of data assimilation accessible. Furthermore, the examples, exercises and MATLAB software, make the book suitable for students in applied mathematics, either through a lecture course, or through self-study.



An Introduction to Mathematical Epidemiology

An Introduction to Mathematical Epidemiology Author Maia Martcheva
ISBN-10 9781489976123
Release 2015-10-20
Pages 453
Download Link Click Here

The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of infectious diseases. It includes model building, fitting to data, local and global analysis techniques. Various types of deterministic dynamical models are considered: ordinary differential equation models, delay-differential equation models, difference equation models, age-structured PDE models and diffusion models. It includes various techniques for the computation of the basic reproduction number as well as approaches to the epidemiological interpretation of the reproduction number. MATLAB code is included to facilitate the data fitting and the simulation with age-structured models.



Numerical Mathematics

Numerical Mathematics Author Alfio Quarteroni
ISBN-10 9783540498094
Release 2010-11-30
Pages 657
Download Link Click Here

This book provides the mathematical foundations of numerical methods and demonstrates their performance on examples, exercises and real-life applications. This is done using the MATLAB software environment, which allows an easy implementation and testing of the algorithms for any specific class of problems. The book is addressed to students in Engineering, Mathematics, Physics and Computer Sciences. In the second edition of this extremely popular textbook on numerical analysis, the readability of pictures, tables and program headings has been improved. Several changes in the chapters on iterative methods and on polynomial approximation have also been



An Introduction to Modeling Neuronal Dynamics

An Introduction to Modeling Neuronal Dynamics Author Christoph Börgers
ISBN-10 9783319511719
Release 2017-05-16
Pages 457
Download Link Click Here

This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book.



A Physical Introduction to Suspension Dynamics

A Physical Introduction to Suspension Dynamics Author Élisabeth Guazzelli
ISBN-10 9781139503938
Release 2011-11-24
Pages
Download Link Click Here

Understanding the behaviour of particles suspended in a fluid has many important applications across a range of fields, including engineering and geophysics. Comprising two main parts, this book begins with the well-developed theory of particles in viscous fluids, i.e. microhydrodynamics, particularly for single- and pair-body dynamics. Part II considers many-body dynamics, covering shear flows and sedimentation, bulk flow properties and collective phenomena. An interlude between the two parts provides the basic statistical techniques needed to employ the results of the first (microscopic) in the second (macroscopic). The authors introduce theoretical, mathematical concepts through concrete examples, making the material accessible to non-mathematicians. They also include some of the many open questions in the field to encourage further study. Consequently, this is an ideal introduction for students and researchers from other disciplines who are approaching suspension dynamics for the first time.



Nonlinear Systems

Nonlinear Systems Author P. G. Drazin
ISBN-10 0521406684
Release 1992-06-26
Pages 317
Download Link Click Here

A coherent treatment of nonlinear systems covering chaos, fractals, and bifurcation, as well as equilibrium, stability, and nonlinear oscillations. The systems treated are mostly of difference and differential equations. The author introduces the mathematical properties of nonlinear systems as an integrated theory, rather than simply presenting isolated fashionable topics. The topics are discussed in as concrete a way as possible, worked examples and problems are used to motivate and illustrate the general principles. More advanced parts of the text are denoted by asterisks, thus making it ideally suited to both undergraduate and graduate courses.