Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Applied Regression Analysis and Generalized Linear Models

Applied Regression Analysis and Generalized Linear Models Author John Fox
ISBN-10 9781483321318
Release 2015-03-18
Pages 816
Download Link Click Here

Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book.



Applied Regression Analysis Linear Models and Related Methods

Applied Regression Analysis  Linear Models  and Related Methods Author John Fox
ISBN-10 080394540X
Release 1997
Pages 597
Download Link Click Here

An accessible, detailed, and up-to-date treatment of regression analysis, linear models, and closely related methods is provided in this book. Incorporating nearly 200 graphs and numerous examples and exercises that employ real data from the social sciences, the book begins with a consideration of the role of statistical data analysis in social research. It then moves on to cover the following topics: graphical methods for examining and transforming data; linear least-squares regression; dummy-variables regression; analysis of variance; diagnostic methods for discovering whether a linear model fit to data adequately represents the data; extensions to linear least squares, including logit and probit models, time-series regression, nonlinear



An R Companion to Applied Regression

An R Companion to Applied Regression Author John Fox
ISBN-10 9781412975148
Release 2011
Pages 449
Download Link Click Here

This book aims to provide a broad introduction to the R statistical environment in the context of applied regression analysis, which is typically studied by social scientists and others in a second course in applied statistics.



An R and S Plus Companion to Applied Regression

An R and S Plus Companion to Applied Regression Author John Fox
ISBN-10 0761922806
Release 2002-06-05
Pages 312
Download Link Click Here

"This book fits right into a needed niche: rigorous enough to give full explanation of the power of the S language, yet accessible enough to assign to social science graduate students without fear of intimidation. It is a tremendous balance of applied statistical "firepower" and thoughtful explanation. It meets all of the important mechanical needs: each example is given in detail, code and data are freely available, and the nuances of models are given rather than just the bare essentials. It also meets some important theoretical needs: linear models, categorical data analysis, an introduction to applying GLMs, a discussion of model diagnostics, and useful instructions on writing customized functions. " —JEFF GILL, University of Florida, Gainesville



Applied Regression Analysis

Applied Regression Analysis Author Norman R. Draper
ISBN-10 9781118625682
Release 2014-08-25
Pages 736
Download Link Click Here

An outstanding introduction to the fundamentals of regression analysis-updated and expanded The methods of regression analysis are the most widely used statistical tools for discovering the relationships among variables. This classic text, with its emphasis on clear, thorough presentation of concepts and applications, offers a complete, easily accessible introduction to the fundamentals of regression analysis. Assuming only a basic knowledge of elementary statistics, Applied Regression Analysis, Third Edition focuses on the fitting and checking of both linear and nonlinear regression models, using small and large data sets, with pocket calculators or computers. This Third Edition features separate chapters on multicollinearity, generalized linear models, mixture ingredients, geometry of regression, robust regression, and resampling procedures. Extensive support materials include sets of carefully designed exercises with full or partial solutions and a series of true/false questions with answers. All data sets used in both the text and the exercises can be found on the companion disk at the back of the book. For analysts, researchers, and students in university, industrial, and government courses on regression, this text is an excellent introduction to the subject and an efficient means of learning how to use a valuable analytical tool. It will also prove an invaluable reference resource for applied scientists and statisticians.



Generalized Linear Models

Generalized Linear Models Author Raymond H. Myers
ISBN-10 9780470556979
Release 2012-01-20
Pages 544
Download Link Click Here

Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities." —Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Maintaining the same nontechnical approach as its predecessor, this update has been thoroughly extended to include the latest developments, relevant computational approaches, and modern examples from the fields of engineering and physical sciences. This new edition maintains its accessible approach to the topic by reviewing the various types of problems that support the use of GLMs and providing an overview of the basic, related concepts such as multiple linear regression, nonlinear regression, least squares, and the maximum likelihood estimation procedure. Incorporating the latest developments, new features of this Second Edition include: A new chapter on random effects and designs for GLMs A thoroughly revised chapter on logistic and Poisson regression, now with additional results on goodness of fit testing, nominal and ordinal responses, and overdispersion A new emphasis on GLM design, with added sections on designs for regression models and optimal designs for nonlinear regression models Expanded discussion of weighted least squares, including examples that illustrate how to estimate the weights Illustrations of R code to perform GLM analysis The authors demonstrate the diverse applications of GLMs through numerous examples, from classical applications in the fields of biology and biopharmaceuticals to more modern examples related to engineering and quality assurance. The Second Edition has been designed to demonstrate the growing computational nature of GLMs, as SAS®, Minitab®, JMP®, and R software packages are used throughout the book to demonstrate fitting and analysis of generalized linear models, perform inference, and conduct diagnostic checking. Numerous figures and screen shots illustrating computer output are provided, and a related FTP site houses supplementary material, including computer commands and additional data sets. Generalized Linear Models, Second Edition is an excellent book for courses on regression analysis and regression modeling at the upper-undergraduate and graduate level. It also serves as a valuable reference for engineers, scientists, and statisticians who must understand and apply GLMs in their work.



Multiple and Generalized Nonparametric Regression

Multiple and Generalized Nonparametric Regression Author John Fox
ISBN-10 0761921893
Release 2000-05-01
Pages 83
Download Link Click Here

This book builds on John Fox’s previous volume in the QASS Series, Non Parametric Simple Regression. In this book, the reader learns how to estimate and plot smooth functions when there are multiple independent variables.



Generalized Linear Models

Generalized Linear Models Author John Patrick Hoffmann
ISBN-10 UCSC:32106016643154
Release 2004
Pages 204
Download Link Click Here

This brief and economical text shows students with relatively little mathematical background how to understand and apply sophisticated linear regression models in their research areas within the social, behavioral, and medical sciences, as well as marketing, and business. Less theoretical than competing texts, Hoffman includes numerous exercises and worked-out examples and sample programs and data sets for three popular statistical software programs: SPSS, SAS, and Stata.



Applied Regression Including Computing and Graphics

Applied Regression Including Computing and Graphics Author R. Dennis Cook
ISBN-10 9780470317785
Release 2009-09-25
Pages 632
Download Link Click Here

A step-by-step guide to computing and graphics in regression analysis In this unique book, leading statisticians Dennis Cook and Sanford Weisberg expertly blend regression fundamentals and cutting-edge graphical techniques. They combine and up- date most of the material from their widely used earlier work, An Introduction to Regression Graphics, and Weisberg's Applied Linear Regression; incorporate the latest in statistical graphics, computing, and regression models; and wind up with a modern, fully integrated approach to one of the most important tools of data analysis. In 23 concise, easy-to-digest chapters, the authors present:? A wealth of simple 2D and 3D graphical techniques, helping visualize results through graphs * An improved version of the user-friendly Arc software, which lets readers promptly implement new ideas * Complete coverage of regression models, including logistic regression and generalized linear models * More than 300 figures, easily reproducible on the computer * Numerous examples and problems based on real data * A companion Web site featuring free software and advice, available at www.wiley.com/mathem atics Accessible, self-contained, and fully referenced, Applied Regression Including Computing and Graphics assumes only a first course in basic statistical methods and provides a bona fide user manual for the Arc software. It is an invaluable resource for anyone interested in learning how to analyze regression problems with confidence and depth.



Applying Generalized Linear Models

Applying Generalized Linear Models Author James K. Lindsey
ISBN-10 9780387227306
Release 2008-01-15
Pages 256
Download Link Click Here

This book describes how generalised linear modelling procedures can be used in many different fields, without becoming entangled in problems of statistical inference. The author shows the unity of many of the commonly used models and provides readers with a taste of many different areas, such as survival models, time series, and spatial analysis, and of their unity. As such, this book will appeal to applied statisticians and to scientists having a basic grounding in modern statistics. With many exercises at the end of each chapter, it will equally constitute an excellent text for teaching applied statistics students and non- statistics majors. The reader is assumed to have knowledge of basic statistical principles, whether from a Bayesian, frequentist, or direct likelihood point of view, being familiar at least with the analysis of the simpler normal linear models, regression and ANOVA.



Regression Diagnostics

Regression Diagnostics Author John Fox
ISBN-10 080393971X
Release 1991-08-14
Pages 92
Download Link Click Here

With Regression Diagnostics, researchers now have an accessible explanation of the techniques needed for exploring problems that compromise a regression analysis and for determining whether certain assumptions appear reasonable. The book covers such topics as the problem of collinearity in multiple regression, dealing with outlying and influential data, non-normality of errors, non-constant error variance and the problems and opportunities presented by discrete data. In addition, sophisticated diagnostics based on maximum-likelihood methods, scores tests, and constructed variables are introduced.



Extending the Linear Model with R

Extending the Linear Model with R Author Julian J. Faraway
ISBN-10 0203492285
Release 2016-02-10
Pages 312
Download Link Click Here

Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway's critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author's treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the data described in the book is available at http://people.bath.ac.uk/jjf23/ELM/ Statisticians need to be familiar with a broad range of ideas and techniques. This book provides a well-stocked toolbox of methodologies, and with its unique presentation of these very modern statistical techniques, holds the potential to break new ground in the way graduate-level courses in this area are taught.



Nonparametric Regression and Generalized Linear Models

Nonparametric Regression and Generalized Linear Models Author P.J. Green
ISBN-10 0412300400
Release 1993-05-01
Pages 184
Download Link Click Here

In recent years, there has been a great deal of interest and activity in the general area of nonparametric smoothing in statistics. This monograph concentrates on the roughness penalty method and shows how this technique provides a unifying approach to a wide range of smoothing problems. The method allows parametric assumptions to be realized in regression problems, in those approached by generalized linear modelling, and in many other contexts. The emphasis throughout is methodological rather than theoretical, and it concentrates on statistical and computation issues. Real data examples are used to illustrate the various methods and to compare them with standard parametric approaches. Some publicly available software is also discussed. The mathematical treatment is self-contained and depends mainly on simple linear algebra and calculus. This monograph will be useful both as a reference work for research and applied statisticians and as a text for graduate students and other encountering the material for the first time.



Foundations of Linear and Generalized Linear Models

Foundations of Linear and Generalized Linear Models Author Alan Agresti
ISBN-10 9781118730034
Release 2015-02-23
Pages 472
Download Link Click Here

"This book presents an overview of the foundations and the key ideas and results of linear and generalized linear models under one cover. Written by a prolific academic, researcher, and textbook writer, Foundations of Linear and Generalized Linear Modelsis soon to become the gold standard by which all existing textbooks on the topic will be compared. While the emphasis is clearly and succinctly on theoretical underpinnings, applications in "R" are presented when they help to elucidate the content or promote practical model building. Each chapter contains approximately 15-20 exercises, primarily for readers to practice and extend the theory, but, also to assimilate the ideas by doing some data analysis. The carefully crafted models and examples convey basic concepts and do not get mired down in non-trivial considerations. An author-maintained web site includes, among other numerous pedagogical supplements, analyses that parallel the "R" routines from the book in SAS, SPSS and Stata"--



Applied Regression Analysis and Other Multivariable Methods

Applied Regression Analysis and Other Multivariable Methods Author David G. Kleinbaum
ISBN-10 9781285963754
Release 2013-08-30
Pages 1072
Download Link Click Here

This bestseller will help you learn regression-analysis methods that you can apply to real-life problems. It highlights the role of the computer in contemporary statistics with numerous printouts and exercises that you can solve using the computer. The authors continue to emphasize model development, the intuitive logic and assumptions that underlie the techniques covered, the purposes, advantages, and disadvantages of the techniques, and valid interpretations of those techniques. Available with InfoTrac Student Collections http://gocengage.com/infotrac. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.



Generalized Linear Models Second Edition

Generalized Linear Models  Second Edition Author P. McCullagh
ISBN-10 0412317605
Release 1989-08-01
Pages 532
Download Link Click Here

The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and other applications. The authors focus on examining the way a response variable depends on a combination of explanatory variables, treatment, and classification variables. They give particular emphasis to the important case where the dependence occurs through some unknown, linear combination of the explanatory variables. The Second Edition includes topics added to the core of the first edition, including conditional and marginal likelihood methods, estimating equations, and models for dispersion effects and components of dispersion. The discussion of other topics-log-linear and related models, log odds-ratio regression models, multinomial response models, inverse linear and related models, quasi-likelihood functions, and model checking-was expanded and incorporates significant revisions. Comprehension of the material requires simply a knowledge of matrix theory and the basic ideas of probability theory, but for the most part, the book is self-contained. Therefore, with its worked examples, plentiful exercises, and topics of direct use to researchers in many disciplines, Generalized Linear Models serves as ideal text, self-study guide, and reference.



A Mathematical Primer for Social Statistics

A Mathematical Primer for Social Statistics Author John Fox
ISBN-10 9781412960809
Release 2009
Pages 170
Download Link Click Here

Beyond the introductory level, learning and effectively using statistical methods in the social sciences requires some knowledge of mathematics. This handy volume introduces the areas of mathematics that are most important to applied social statistics.