Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Basic Algebraic Geometry 1

Basic Algebraic Geometry 1 Author Igor R. Shafarevich
ISBN-10 9783642379567
Release 2013-08-13
Pages 310
Download Link Click Here

Shafarevich's Basic Algebraic Geometry has been a classic and universally used introduction to the subject since its first appearance over 40 years ago. As the translator writes in a prefatory note, ``For all [advanced undergraduate and beginning graduate] students, and for the many specialists in other branches of math who need a liberal education in algebraic geometry, Shafarevich’s book is a must.'' The third edition, in addition to some minor corrections, now offers a new treatment of the Riemann--Roch theorem for curves, including a proof from first principles. Shafarevich's book is an attractive and accessible introduction to algebraic geometry, suitable for beginning students and nonspecialists, and the new edition is set to remain a popular introduction to the field.



Basic Algebraic Geometry 2

Basic Algebraic Geometry 2 Author Igor R. Shafarevich
ISBN-10 9783642380105
Release 2013-08-31
Pages 262
Download Link Click Here

Shafarevich's Basic Algebraic Geometry has been a classic and universally used introduction to the subject since its first appearance over 40 years ago. As the translator writes in a prefatory note, ``For all [advanced undergraduate and beginning graduate] students, and for the many specialists in other branches of math who need a liberal education in algebraic geometry, Shafarevich’s book is a must.'' The second volume is in two parts: Book II is a gentle cultural introduction to scheme theory, with the first aim of putting abstract algebraic varieties on a firm foundation; a second aim is to introduce Hilbert schemes and moduli spaces, that serve as parameter spaces for other geometric constructions. Book III discusses complex manifolds and their relation with algebraic varieties, Kähler geometry and Hodge theory. The final section raises an important problem in uniformising higher dimensional varieties that has been widely studied as the ``Shafarevich conjecture''. The style of Basic Algebraic Geometry 2 and its minimal prerequisites make it to a large extent independent of Basic Algebraic Geometry 1, and accessible to beginning graduate students in mathematics and in theoretical physics.



Lectures on Curves Surfaces and Projective Varieties

Lectures on Curves  Surfaces and Projective Varieties Author Mauro Beltrametti
ISBN-10 3037190647
Release 2009-01-01
Pages 491
Download Link Click Here

This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students of the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses on the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.



Algebraic Geometry

Algebraic Geometry Author Robin Hartshorne
ISBN-10 9781475738490
Release 2013-06-29
Pages 496
Download Link Click Here

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.



Undergraduate Algebraic Geometry

Undergraduate Algebraic Geometry Author Miles Reid
ISBN-10 0521356628
Release 1988-12-15
Pages 129
Download Link Click Here

This short and readable introduction to algebraic geometry will be ideal for all undergraduate mathematicians coming to the subject for the first time.



The Geometry of Schemes

The Geometry of Schemes Author David Eisenbud
ISBN-10 9780387226392
Release 2006-04-06
Pages 300
Download Link Click Here

Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.



ALgebraic Geometry

ALgebraic Geometry Author David Mumford
ISBN-10 3540586571
Release 1995-02-15
Pages 186
Download Link Click Here

Let me begin with a little history. In the 20th century, algebraic geometry has gone through at least 3 distinct phases. In the period 1900-1930, largely under the leadership of the 3 Italians, Castelnuovo, Enriques and Severi, the subject grew immensely. In particular, what the late 19th century had done for curves, this period did for surfaces: a deep and systematic theory of surfaces was created. Moreover, the links between the "synthetic" or purely "algebro-geometric" techniques for studying surfaces, and the topological and analytic techniques were thoroughly explored. However the very diversity of tools available and the richness of the intuitively appealing geometric picture that was built up, led this school into short-cutting the fine details of all proofs and ignoring at times the time consuming analysis of special cases (e. g. , possibly degenerate configurations in a construction). This is the traditional difficulty of geometry, from High School Euclidean geometry on up. In the period 1930-1960, under the leadership of Zariski, Weil, and (towards the end) Grothendieck, an immense program was launched to introduce systematically the tools of commutative algebra into algebraic geometry and to find a common language in which to talk, for instance, of projective varieties over characteristic p fields as well as over the complex numbers. In fact, the goal, which really goes back to Kronecker, was to create a "geometry" incorporating at least formally arithmetic as well as projective geo metry.



A Royal Road to Algebraic Geometry

A Royal Road to Algebraic Geometry Author Audun Holme
ISBN-10 3642192254
Release 2011-10-06
Pages 366
Download Link Click Here

This book is about modern algebraic geometry. The title A Royal Road to Algebraic Geometry is inspired by the famous anecdote about the king asking Euclid if there really existed no simpler way for learning geometry, than to read all of his work Elements. Euclid is said to have answered: “There is no royal road to geometry!” The book starts by explaining this enigmatic answer, the aim of the book being to argue that indeed, in some sense there is a royal road to algebraic geometry. From a point of departure in algebraic curves, the exposition moves on to the present shape of the field, culminating with Alexander Grothendieck’s theory of schemes. Contemporary homological tools are explained. The reader will follow a directed path leading up to the main elements of modern algebraic geometry. When the road is completed, the reader is empowered to start navigating in this immense field, and to open up the door to a wonderful field of research. The greatest scientific experience of a lifetime!



Rational Curves on Algebraic Varieties

Rational Curves on Algebraic Varieties Author Janos Kollar
ISBN-10 9783662032763
Release 2013-04-09
Pages 321
Download Link Click Here

The aim of this book is to provide an introduction to the structure theory of higher dimensional algebraic varieties by studying the geometry of curves, especially rational curves, on varieties. The main applications are in the study of Fano varieties and of related varieties with lots of rational curves on them. This Ergebnisse volume provides the first systematic introduction to this field of study. The book contains a large number of examples and exercises which serve to illustrate the range of the methods and also lead to many open questions of current research.



Fundamental Algebraic Geometry

Fundamental Algebraic Geometry Author Barbara Fantechi
ISBN-10 9780821842454
Release 2005
Pages 339
Download Link Click Here

Alexander Grothendieck introduced many concepts into algebraic geometry; they turned out to be astoundingly powerful and productive and truly revolutionized the subject. Grothendieck sketched his new theories in a series of talks at the Seminaire Bourbaki between 1957 and 1962 and collected his write-ups in a volume entitled ``Fondements de la Geometrie Algebrique,'' known as FGA. Much of FGA is now common knowledge; however, some of FGA is less well known, and its full scope is familiar to few. The present book resulted from the 2003 ``Advanced School in Basic Algebraic Geometry'' at the ICTP in Trieste, Italy. The book aims to fill in Grothendieck's brief sketches. There are four themes: descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. Most results are proved in full detail; furthermore, newer ideas are introduced to promote understanding, and many connections are drawn to newer developments. The main prerequisite is a thorough acquaintance with basic scheme theory. Thus this book is a valuable resource for anyone doing algebraic geometry.



An Invitation to Algebraic Geometry

An Invitation to Algebraic Geometry Author Karen E. Smith
ISBN-10 9781475744972
Release 2013-03-09
Pages 164
Download Link Click Here

This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.



Algebraic Geometry

Algebraic Geometry Author Daniel Perrin
ISBN-10 1848000561
Release 2007-12-16
Pages 263
Download Link Click Here

Aimed primarily at graduate students and beginning researchers, this book provides an introduction to algebraic geometry that is particularly suitable for those with no previous contact with the subject; it assumes only the standard background of undergraduate algebra. The book starts with easily-formulated problems with non-trivial solutions and uses these problems to introduce the fundamental tools of modern algebraic geometry: dimension; singularities; sheaves; varieties; and cohomology. A range of exercises is provided for each topic discussed, and a selection of problems and exam papers are collected in an appendix to provide material for further study.



Algebraic Geometry I

Algebraic Geometry I Author V.I. Danilov
ISBN-10 3540637052
Release 1998-03-17
Pages 310
Download Link Click Here

"... To sum up, this book helps to learn algebraic geometry in a short time, its concrete style is enjoyable for students and reveals the beauty of mathematics." --Acta Scientiarum Mathematicarum



Algebraic Geometry II

Algebraic Geometry II Author I.R. Shafarevich
ISBN-10 9783642609251
Release 2013-11-22
Pages 264
Download Link Click Here

This two-part volume contains numerous examples and insights on various topics. The authors have taken pains to present the material rigorously and coherently. This book will be immensely useful to mathematicians and graduate students working in algebraic geometry, arithmetic algebraic geometry, complex analysis and related fields.



Algebraic Function Fields and Codes

Algebraic Function Fields and Codes Author Henning Stichtenoth
ISBN-10 9783540768784
Release 2009-02-11
Pages 360
Download Link Click Here

This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.



Classical Algebraic Geometry

Classical Algebraic Geometry Author Igor V. Dolgachev
ISBN-10 9781139560788
Release 2012-08-16
Pages
Download Link Click Here

Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.



Basic Algebraic Geometry Varieties in projective space

Basic Algebraic Geometry  Varieties in projective space Author Igorʹ Rostislavovich Shafarevich
ISBN-10 OCLC:31456035
Release 1994
Pages
Download Link Click Here

Basic Algebraic Geometry Varieties in projective space has been writing in one form or another for most of life. You can find so many inspiration from Basic Algebraic Geometry Varieties in projective space also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Basic Algebraic Geometry Varieties in projective space book for free.