Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Bayesian Analysis Made Simple

Bayesian Analysis Made Simple Author Phil Woodward
ISBN-10 9781439839553
Release 2016-04-19
Pages 364
Download Link Click Here

Although the popularity of the Bayesian approach to statistics has been growing for years, many still think of it as somewhat esoteric, not focused on practical issues, or generally too difficult to understand. Bayesian Analysis Made Simple is aimed at those who wish to apply Bayesian methods but either are not experts or do not have the time to create WinBUGS code and ancillary files for every analysis they undertake. Accessible to even those who would not routinely use Excel, this book provides a custom-made Excel GUI, immediately useful to those users who want to be able to quickly apply Bayesian methods without being distracted by computing or mathematical issues. From simple NLMs to complex GLMMs and beyond, Bayesian Analysis Made Simple describes how to use Excel for a vast range of Bayesian models in an intuitive manner accessible to the statistically savvy user. Packed with relevant case studies, this book is for any data analyst wishing to apply Bayesian methods to analyze their data, from professional statisticians to statistically aware scientists.



Randomized Phase II Cancer Clinical Trials

Randomized Phase II Cancer Clinical Trials Author Sin-Ho Jung
ISBN-10 9781439871850
Release 2013-05-02
Pages 244
Download Link Click Here

In cancer research, a traditional phase II trial is designed as a single-arm trial that compares the experimental therapy to a historical control. This simple trial design has led to several adverse issues, including increased false positivity of phase II trial results and negative phase III trials. To rectify these problems, oncologists and biostatisticians have begun to use a randomized phase II trial that compares an experimental therapy with a prospective control therapy. Randomized Phase II Cancer Clinical Trials explains how to properly select and accurately use diverse statistical methods for designing and analyzing phase II trials. The author first reviews the statistical methods for single-arm phase II trials since some methodologies for randomized phase II trials stem from single-arm phase II trials and many phase II cancer clinical trials still use single-arm designs. The book then presents methods for randomized phase II trials and describes statistical methods for both single-arm and randomized phase II trials. Although the text focuses on phase II cancer clinical trials, the statistical methods covered can also be used (with minor modifications) in phase II trials for other diseases and in phase III cancer clinical trials. Suitable for cancer clinicians and biostatisticians, this book shows how randomized phase II trials with a prospective control resolve the shortcomings of traditional single-arm phase II trials. It provides readers with numerous statistical design and analysis methods for randomized phase II trials in oncology.



The BUGS Book

The BUGS Book Author David Lunn
ISBN-10 9781584888499
Release 2012-10-02
Pages 399
Download Link Click Here

Bayesian statistical methods have become widely used for data analysis and modelling in recent years, and the BUGS software has become the most popular software for Bayesian analysis worldwide. Authored by the team that originally developed this software, The BUGS Book provides a practical introduction to this program and its use. The text presents complete coverage of all the functionalities of BUGS, including prediction, missing data, model criticism, and prior sensitivity. It also features a large number of worked examples and a wide range of applications from various disciplines. The book introduces regression models, techniques for criticism and comparison, and a wide range of modelling issues before going into the vital area of hierarchical models, one of the most common applications of Bayesian methods. It deals with essentials of modelling without getting bogged down in complexity. The book emphasises model criticism, model comparison, sensitivity analysis to alternative priors, and thoughtful choice of prior distributions—all those aspects of the "art" of modelling that are easily overlooked in more theoretical expositions. More pragmatic than ideological, the authors systematically work through the large range of "tricks" that reveal the real power of the BUGS software, for example, dealing with missing data, censoring, grouped data, prediction, ranking, parameter constraints, and so on. Many of the examples are biostatistical, but they do not require domain knowledge and are generalisable to a wide range of other application areas. Full code and data for examples, exercises, and some solutions can be found on the book’s website.



Bayesian Designs for Phase I II Clinical Trials

Bayesian Designs for Phase I   II Clinical Trials Author Ying Yuan
ISBN-10 9781315354224
Release 2017-12-21
Pages 310
Download Link Click Here

Reliably optimizing a new treatment in humans is a critical first step in clinical evaluation since choosing a suboptimal dose or schedule may lead to failure in later trials. At the same time, if promising preclinical results do not translate into a real treatment advance, it is important to determine this quickly and terminate the clinical evaluation process to avoid wasting resources. Bayesian Designs for Phase I–II Clinical Trials describes how phase I–II designs can serve as a bridge or protective barrier between preclinical studies and large confirmatory clinical trials. It illustrates many of the severe drawbacks with conventional methods used for early-phase clinical trials and presents numerous Bayesian designs for human clinical trials of new experimental treatment regimes. The first two chapters minimize the technical language to make them accessible to non-statisticians. These chapters discuss the severe drawbacks of the conventional paradigm used for early-phase clinical trials and explain the phase I–II paradigm for optimizing dose, or more general treatment regimes, based on both efficacy and toxicity. The remainder of the book covers a wide variety of clinical trial methodologies, including designs to optimize the dose pair of a two-drug combination, jointly optimize dose and schedule, identify optimal personalized doses, optimize novel molecularly targeted agents, and choose doses in two treatment cycles. Written by research leaders from the University of Texas MD Anderson Cancer Center, this book shows how Bayesian designs for early-phase clinical trials can explore, refine, and optimize new experimental treatments. It emphasizes the importance of basing decisions on both efficacy and toxicity.



Bayesian Approaches to Clinical Trials and Health Care Evaluation

Bayesian Approaches to Clinical Trials and Health Care Evaluation Author David J. Spiegelhalter
ISBN-10 0471499757
Release 2004
Pages 391
Download Link Click Here

The Bayesian approach involves collecting data from past experience in order to reach conclusions about future events. This introduction covers a broad array of topics. It is for statisticians in the pharmaceutical industry, as well as anyone involved in conducting clinical trials and HTA work.



Biostatistics

Biostatistics Author George G. Woodworth
ISBN-10 0471468428
Release 2004-09-06
Pages 384
Download Link Click Here

An essential introductory text linking traditional biostatistics with bayesian methods In recent years, Bayesian methods have seen an explosion of interest, with applications in fields including biochemistry, ecology, medicine, oncology, pharmacology, and public health. As an interpretive system integrating data with observation, the Bayesian approach provides a nuanced yet mathematically rigorous means of conceptualizing biomedical statistics--from diagnostic tests to DNA evidence. Biostatistics: A Bayesian Introduction offers a pioneering approach by presenting the foundations of biostatistics through the Bayesian lens. Using easily understood, classic Dutch Book thought experiments to derive subjective probability from a simple principle of rationality, the book connects statistical science with scientific reasoning. The author shows how to compute, interpret, and report Bayesian statistical analyses in practice, and illustrates how to reinterpret traditional statistical reporting--such as confidence intervals, margins of error, and one-sided p-values--in Bayesian terms. Topics covered include: * Probability and subjective probability * Distributions and descriptive statistics * Continuous probability distributions * Comparing rates and means * Linear models and statistical adjustment * Logistic regression and adjusted odds ratios * Survival analysis * Hierarchical models and meta-analysis * Decision theory and sample size determination The book includes extensive problem sets and references in each chapter, as well as complete instructions on computer analysis with the versatile SAS and WinBUGS software packages as well as the Excel spreadsheet program. For professionals and students, Biostatistics: A Bayesian Introduction offers an unique, real-world entry point into a remarkable alternative method of interpreting statistical data.



Applied Bayesian Hierarchical Methods

Applied Bayesian Hierarchical Methods Author Peter D. Congdon
ISBN-10 1584887214
Release 2010-05-19
Pages 604
Download Link Click Here

The use of Markov chain Monte Carlo (MCMC) methods for estimating hierarchical models involves complex data structures and is often described as a revolutionary development. An intermediate-level treatment of Bayesian hierarchical models and their applications, Applied Bayesian Hierarchical Methods demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables and in methods where parameters can be treated as random collections. Emphasizing computational issues, the book provides examples of the following application settings: meta-analysis, data structured in space or time, multilevel and longitudinal data, multivariate data, nonlinear regression, and survival time data. For the worked examples, the text mainly employs the WinBUGS package, allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. It also incorporates BayesX code, which is particularly useful in nonlinear regression. To demonstrate MCMC sampling from first principles, the author includes worked examples using the R package. Through illustrative data analysis and attention to statistical computing, this book focuses on the practical implementation of Bayesian hierarchical methods. It also discusses several issues that arise when applying Bayesian techniques in hierarchical and random effects models.



Introduction to WinBUGS for Ecologists

Introduction to WinBUGS for Ecologists Author Marc Kery
ISBN-10 0123786061
Release 2010-07-19
Pages 320
Download Link Click Here

Introduction to WinBUGS for Ecologists introduces applied Bayesian modeling to ecologists using the highly acclaimed, free WinBUGS software. It offers an understanding of statistical models as abstract representations of the various processes that give rise to a data set. Such an understanding is basic to the development of inference models tailored to specific sampling and ecological scenarios. The book begins by presenting the advantages of a Bayesian approach to statistics and introducing the WinBUGS software. It reviews the four most common statistical distributions: the normal, the uniform, the binomial, and the Poisson. It describes the two different kinds of analysis of variance (ANOVA): one-way and two- or multiway. It looks at the general linear model, or ANCOVA, in R and WinBUGS. It introduces generalized linear model (GLM), i.e., the extension of the normal linear model to allow error distributions other than the normal. The GLM is then extended contain additional sources of random variation to become a generalized linear mixed model (GLMM) for a Poisson example and for a binomial example. The final two chapters showcase two fairly novel and nonstandard versions of a GLMM. The first is the site-occupancy model for species distributions; the second is the binomial (or N-) mixture model for estimation and modeling of abundance. Introduction to the essential theories of key models used by ecologists Complete juxtaposition of classical analyses in R and Bayesian analysis of the same models in WinBUGS Provides every detail of R and WinBUGS code required to conduct all analyses Companion Web Appendix that contains all code contained in the book and additional material (including more code and solutions to exercises)



Geostatistics Valencia 2016

Geostatistics Valencia 2016 Author J. Jaime Gómez-Hernández
ISBN-10 9783319468198
Release 2017-03-07
Pages 974
Download Link Click Here

This book contains selected contributions presented at the 10th International Geostatistics Congress held in Valencia from 5 to 9 September, 2016. This is a quadrennial congress that serves as the meeting point for any engineer, professional, practitioner or scientist working in geostatistics. The book contains carefully reviewed papers on geostatistical theory and applications in fields such as mining engineering, petroleum engineering, environmental science, hydrology, ecology, and other fields.



Robust Methods in Biostatistics

Robust Methods in Biostatistics Author Stephane Heritier
ISBN-10 047074054X
Release 2009-05-11
Pages 292
Download Link Click Here

Robust statistics is an extension of classical statistics that specifically takes into account the concept that the underlying models used to describe data are only approximate. Its basic philosophy is to produce statistical procedures which are stable when the data do not exactly match the postulated models as it is the case for example with outliers. Robust Methods in Biostatistics proposes robust alternatives to common methods used in statistics in general and in biostatistics in particular and illustrates their use on many biomedical datasets. The methods introduced include robust estimation, testing, model selection, model check and diagnostics. They are developed for the following general classes of models: Linear regression Generalized linear models Linear mixed models Marginal longitudinal data models Cox survival analysis model The methods are introduced both at a theoretical and applied level within the framework of each general class of models, with a particular emphasis put on practical data analysis. This book is of particular use for research students,applied statisticians and practitioners in the health field interested in more stable statistical techniques. An accompanying website provides R code for computing all of the methods described, as well as for analyzing all the datasets used in the book.



Bayesian Modeling Using WinBUGS

Bayesian Modeling Using WinBUGS Author Ioannis Ntzoufras
ISBN-10 9781118210352
Release 2011-09-20
Pages 520
Download Link Click Here

A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all data sets and code are available on the book's related Web site. Requiring only a working knowledge of probability theory and statistics, Bayesian Modeling Using WinBUGS serves as an excellent book for courses on Bayesian statistics at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, actuarial science, medicine, and the social sciences who use WinBUGS in their everyday work.



Ecological Inference

Ecological Inference Author Gary King
ISBN-10 0521542804
Release 2004-09-13
Pages 421
Download Link Click Here

Drawing upon the explosion of research in the field, a diverse group of scholars surveys strategies for solving ecological inference problems, the process of trying to infer individual behavior from aggregate data. The uncertainties and information lost in aggregation make ecological inference one of the most difficult areas of statistical inference, but these inferences are required in many academic fields, as well as by legislatures and the Courts in redistricting, marketing research by business, and policy analysis by governments. This wide-ranging collection of essays, first published in 2004, offers many important contributions to the study of ecological inference.



Data Mining and Statistics for Decision Making

Data Mining and Statistics for Decision Making Author Stéphane Tufféry
ISBN-10 0470979283
Release 2011-03-23
Pages 716
Download Link Click Here

Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques. Starts from basic principles up to advanced concepts. Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software. Gives practical tips for data mining implementation to solve real world problems. Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring. Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.



SAS and R

SAS and R Author Ken Kleinman
ISBN-10 9781466584495
Release 2014-07-17
Pages 468
Download Link Click Here

An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent Tasks The first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the Second Edition This edition now covers RStudio, a powerful and easy-to-use interface for R. It incorporates a number of additional topics, including using application program interfaces (APIs), accessing data through database management systems, using reproducible analysis tools, and statistical analysis with Markov chain Monte Carlo (MCMC) methods and finite mixture models. It also includes extended examples of simulations and many new examples. Enables Easy Mobility between the Two Systems Through the extensive indexing and cross-referencing, users can directly find and implement the material they need. SAS users can look up tasks in the SAS index and then find the associated R code while R users can benefit from the R index in a similar manner. Numerous example analyses demonstrate the code in action and facilitate further exploration. The datasets and code are available for download on the book’s website.



Analyzing Animal Societies

Analyzing Animal Societies Author Hal Whitehead
ISBN-10 9780226895246
Release 2008-09-15
Pages 320
Download Link Click Here

Animals lead rich social lives. They care for one another, compete for resources, and mate. Within a society, social relationships may be simple or complex and usually vary considerably, both between different groups of individuals and over time. These social systems are fundamental to biological organization, and animal societies are central to studies of behavioral and evolutionary biology. But how do we study animal societies? How do we take observations of animals fighting, grooming, or forming groups and produce a realistic description or model of their societies? Analyzing AnimalSocieties presents a conceptual framework for analyzing social behavior and demonstrates how to put this framework into practice by collecting suitable data on the interactions and associations of individuals so that relationships can be described, and, from these, models can be derived. In addition to presenting the tools, Hal Whitehead illustrates their applicability using a wide range of real data on a variety of animal species—from bats and chimps to dolphins and birds. The techniques that Whitehead describes will be profitably adopted by scientists working with primates, cetaceans, birds, and ungulates, but the tools can be used to study societies of invertebrates, amphibians, and even humans. Analyzing AnimalSocieties will become a standard reference for those studying vertebrate social behavior and will give to these studies the kind of quality standard already in use in other areas of the life sciences.



Handbook of Meta analysis in Ecology and Evolution

Handbook of Meta analysis in Ecology and Evolution Author Julia Koricheva
ISBN-10 9781400846184
Release 2013-04-21
Pages 520
Download Link Click Here

Meta-analysis is a powerful statistical methodology for synthesizing research evidence across independent studies. This is the first comprehensive handbook of meta-analysis written specifically for ecologists and evolutionary biologists, and it provides an invaluable introduction for beginners as well as an up-to-date guide for experienced meta-analysts. The chapters, written by renowned experts, walk readers through every step of meta-analysis, from problem formulation to the presentation of the results. The handbook identifies both the advantages of using meta-analysis for research synthesis and the potential pitfalls and limitations of meta-analysis (including when it should not be used). Different approaches to carrying out a meta-analysis are described, and include moment and least-square, maximum likelihood, and Bayesian approaches, all illustrated using worked examples based on real biological datasets. This one-of-a-kind resource is uniquely tailored to the biological sciences, and will provide an invaluable text for practitioners from graduate students and senior scientists to policymakers in conservation and environmental management. Walks you through every step of carrying out a meta-analysis in ecology and evolutionary biology, from problem formulation to result presentation Brings together experts from a broad range of fields Shows how to avoid, minimize, or resolve pitfalls such as missing data, publication bias, varying data quality, nonindependence of observations, and phylogenetic dependencies among species Helps you choose the right software Draws on numerous examples based on real biological datasets



An Introduction to Optimal Designs for Social and Biomedical Research

An Introduction to Optimal Designs for Social and Biomedical Research Author Martijn P.F. Berger
ISBN-10 0470746920
Release 2009-05-27
Pages 346
Download Link Click Here

The increasing cost of research means that scientists are in more urgent need of optimal design theory to increase the efficiency of parameter estimators and the statistical power of their tests. The objectives of a good design are to provide interpretable and accurate inference at minimal costs. Optimal design theory can help to identify a design with maximum power and maximum information for a statistical model and, at the same time, enable researchers to check on the model assumptions. This Book: Introduces optimal experimental design in an accessible format. Provides guidelines for practitioners to increase the efficiency of their designs, and demonstrates how optimal designs can reduce a study’s costs. Discusses the merits of optimal designs and compares them with commonly used designs. Takes the reader from simple linear regression models to advanced designs for multiple linear regression and nonlinear models in a systematic manner. Illustrates design techniques with practical examples from social and biomedical research to enhance the reader’s understanding. Researchers and students studying social, behavioural and biomedical sciences will find this book useful for understanding design issues and in putting optimal design ideas to practice.