Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Big Data and Social Science

Big Data and Social Science Author Ian Foster
ISBN-10 9781498751438
Release 2016-08-10
Pages 376
Download Link Click Here

Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.



Applied Survey Data Analysis

Applied Survey Data Analysis Author Steven G. Heeringa
ISBN-10 1420080679
Release 2010-04-05
Pages 487
Download Link Click Here

Taking a practical approach that draws on the authors’ extensive teaching, consulting, and research experiences, Applied Survey Data Analysis provides an intermediate-level statistical overview of the analysis of complex sample survey data. It emphasizes methods and worked examples using available software procedures while reinforcing the principles and theory that underlie those methods. After introducing a step-by-step process for approaching a survey analysis problem, the book presents the fundamental features of complex sample designs and shows how to integrate design characteristics into the statistical methods and software for survey estimation and inference. The authors then focus on the methods and models used in analyzing continuous, categorical, and count-dependent variables; event history; and missing data problems. Some of the techniques discussed include univariate descriptive and simple bivariate analyses, the linear regression model, generalized linear regression modeling methods, the Cox proportional hazards model, discrete time models, and the multiple imputation analysis method. The final chapter covers new developments in survey applications of advanced statistical techniques, including model-based analysis approaches. Designed for readers working in a wide array of disciplines who use survey data in their work, this book also provides a useful framework for integrating more in-depth studies of the theory and methods of survey data analysis. A guide to the applied statistical analysis and interpretation of survey data, it contains many examples and practical exercises based on major real-world survey data sets. Although the authors use Stata for most examples in the text, they offer SAS, SPSS, SUDAAN, R, WesVar, IVEware, and Mplus software code for replicating the examples on the book’s website: http://www.isr.umich.edu/src/smp/asda/



Bayesian Methods

Bayesian Methods Author Jeff Gill
ISBN-10 9781439862490
Release 2014-12-11
Pages 724
Download Link Click Here

An Update of the Most Popular Graduate-Level Introductions to Bayesian Statistics for Social Scientists Now that Bayesian modeling has become standard, MCMC is well understood and trusted, and computing power continues to increase, Bayesian Methods: A Social and Behavioral Sciences Approach, Third Edition focuses more on implementation details of the procedures and less on justifying procedures. The expanded examples reflect this updated approach. New to the Third Edition A chapter on Bayesian decision theory, covering Bayesian and frequentist decision theory as well as the connection of empirical Bayes with James–Stein estimation A chapter on the practical implementation of MCMC methods using the BUGS software Greatly expanded chapter on hierarchical models that shows how this area is well suited to the Bayesian paradigm Many new applications from a variety of social science disciplines Double the number of exercises, with 20 now in each chapter Updated BaM package in R, including new datasets, code, and procedures for calling BUGS packages from R This bestselling, highly praised text continues to be suitable for a range of courses, including an introductory course or a computing-centered course. It shows students in the social and behavioral sciences how to use Bayesian methods in practice, preparing them for sophisticated, real-world work in the field.



Practical Tools for Designing and Weighting Survey Samples

Practical Tools for Designing and Weighting Survey Samples Author Richard Valliant
ISBN-10 9781461464495
Release 2013-05-16
Pages 670
Download Link Click Here

Survey sampling is fundamentally an applied field. The goal in this book is to put an array of tools at the fingertips of practitioners by explaining approaches long used by survey statisticians, illustrating how existing software can be used to solve survey problems, and developing some specialized software where needed. This book serves at least three audiences: (1) Students seeking a more in-depth understanding of applied sampling either through a second semester-long course or by way of a supplementary reference; (2) Survey statisticians searching for practical guidance on how to apply concepts learned in theoretical or applied sampling courses; and (3) Social scientists and other survey practitioners who desire insight into the statistical thinking and steps taken to design, select, and weight random survey samples. Several survey data sets are used to illustrate how to design samples, to make estimates from complex surveys for use in optimizing the sample allocation, and to calculate weights. Realistic survey projects are used to demonstrate the challenges and provide a context for the solutions. The book covers several topics that either are not included or are dealt with in a limited way in other texts. These areas include: sample size computations for multistage designs; power calculations related to surveys; mathematical programming for sample allocation in a multi-criteria optimization setting; nuts and bolts of area probability sampling; multiphase designs; quality control of survey operations; and statistical software for survey sampling and estimation. An associated R package, PracTools, contains a number of specialized functions for sample size and other calculations. The data sets used in the book are also available in PracTools, so that the reader may replicate the examples or perform further analyses.



Behavioral Computational Social Science

Behavioral Computational Social Science Author Riccardo Boero
ISBN-10 9781118657300
Release 2015-09-28
Pages 200
Download Link Click Here

"Provides a unified approach to social research, integrating both agent-based models and behavioral studies.Introduces the reader to all the concepts, tools and references that are required for conducting research in behavioral computational social science"--



Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences

Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences Author Brian S. Everitt
ISBN-10 9781439807705
Release 2009-09-28
Pages 320
Download Link Click Here

Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences shows students how to apply statistical methods to behavioral science data in a sensible manner. Assuming some familiarity with introductory statistics, the book analyzes a host of real-world data to provide useful answers to real-life issues. The author begins by exploring the types and design of behavioral studies. He also explains how models are used in the analysis of data. After describing graphical methods, such as scatterplot matrices, the text covers simple linear regression, locally weighted regression, multiple linear regression, regression diagnostics, the equivalence of regression and ANOVA, the generalized linear model, and logistic regression. The author then discusses aspects of survival analysis, linear mixed effects models for longitudinal data, and the analysis of multivariate data. He also shows how to carry out principal components, factor, and cluster analyses. The final chapter presents approaches to analyzing multivariate observations from several different populations. Through real-life applications of statistical methodology, this book elucidates the implications of behavioral science studies for statistical analysis. It equips behavioral science students with enough statistical tools to help them succeed later on in their careers. Solutions to the problems as well as all R code and data sets for the examples are available at www.crcpress.com



Analyzing Spatial Models of Choice and Judgment with R

Analyzing Spatial Models of Choice and Judgment with R Author David A. Armstrong, II
ISBN-10 9781466517165
Release 2014-02-07
Pages 356
Download Link Click Here

Modern Methods for Evaluating Your Social Science Data With recent advances in computing power and the widespread availability of political choice data, such as legislative roll call and public opinion survey data, the empirical estimation of spatial models has never been easier or more popular. Analyzing Spatial Models of Choice and Judgment with R demonstrates how to estimate and interpret spatial models using a variety of methods with the popular, open-source programming language R. Requiring basic knowledge of R, the book enables researchers to apply the methods to their own data. Also suitable for expert methodologists, it presents the latest methods for modeling the distances between points—not the locations of the points themselves. This distinction has important implications for understanding scaling results, particularly how uncertainty spreads throughout the entire point configuration and how results are identified. In each chapter, the authors explain the basic theory behind the spatial model, then illustrate the estimation techniques and explore their historical development, and finally discuss the advantages and limitations of the methods. They also demonstrate step by step how to implement each method using R with actual datasets. The R code and datasets are available on the book’s website.



Computational Social Science

Computational Social Science Author R. Michael Alvarez
ISBN-10 9781316531280
Release 2016-03-07
Pages
Download Link Click Here

Quantitative research in social science research is changing rapidly. Researchers have vast and complex arrays of data with which to work: we have incredible tools to sift through the data and recognize patterns in that data; there are now many sophisticated models that we can use to make sense of those patterns; and we have extremely powerful computational systems that help us accomplish these tasks quickly. This book focuses on some of the extraordinary work being conducted in computational social science - in academia, government, and the private sector - while highlighting current trends, challenges, and new directions. Thus, Computational Social Science showcases the innovative methodological tools being developed and applied by leading researchers in this new field. The book shows how academics and the private sector are using many of these tools to solve problems in social science and public policy.



Modern Statistics for the Social and Behavioral Sciences

Modern Statistics for the Social and Behavioral Sciences Author Rand Wilcox
ISBN-10 9781498796804
Release 2017-08-15
Pages 706
Download Link Click Here

Requiring no prior training, Modern Statistics for the Social and Behavioral Sciences provides a two-semester, graduate-level introduction to basic statistical techniques that takes into account recent advances and insights that are typically ignored in an introductory course. Hundreds of journal articles make it clear that basic techniques, routinely taught and used, can perform poorly when dealing with skewed distributions, outliers, heteroscedasticity (unequal variances) and curvature. Methods for dealing with these concerns have been derived and can provide a deeper, more accurate and more nuanced understanding of data. A conceptual basis is provided for understanding when and why standard methods can have poor power and yield misleading measures of effect size. Modern techniques for dealing with known concerns are described and illustrated. Features: Presents an in-depth description of both classic and modern methods Explains and illustrates why recent advances can provide more power and a deeper understanding of data Provides numerous illustrations using the software R Includes an R package with over 1300 functions Includes a solution manual giving detailed answers to all of the exercises This second edition describes many recent advances relevant to basic techniques. For example, a vast array of new and improved methods is now available for dealing with regression, including substantially improved ANCOVA techniques. The coverage of multiple comparison procedures has been expanded and new ANOVA techniques are described. Rand Wilcox is a professor of psychology at the University of Southern California. He is the author of 13 other statistics books and the creator of the R package WRS. He currently serves as an associate editor for five statistics journals. He is a fellow of the Association for Psychological Science and an elected member of the International Statistical Institute.



Survival Analysis with Interval Censored Data

Survival Analysis with Interval Censored Data Author Kris Bogaerts
ISBN-10 9781351643054
Release 2017-11-20
Pages 584
Download Link Click Here

Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS provides the reader with a practical introduction into the analysis of interval-censored survival times. Although many theoretical developments have appeared in the last fifty years, interval censoring is often ignored in practice. Many are unaware of the impact of inappropriately dealing with interval censoring. In addition, the necessary software is at times difficult to trace. This book fills in the gap between theory and practice. Features: -Provides an overview of frequentist as well as Bayesian methods. -Include a focus on practical aspects and applications. -Extensively illustrates the methods with examples using R, SAS, and BUGS. Full programs are available on a supplementary website. The authors: Kris Bogaerts is project manager at I-BioStat, KU Leuven. He received his PhD in science (statistics) at KU Leuven on the analysis of interval-censored data. He has gained expertise in a great variety of statistical topics with a focus on the design and analysis of clinical trials. Arnošt Komárek is associate professor of statistics at Charles University, Prague. His subject area of expertise covers mainly survival analysis with the emphasis on interval-censored data and classification based on longitudinal data. He is past chair of the Statistical Modelling Society?and editor of?Statistical Modelling: An International Journal. Emmanuel Lesaffre is professor of biostatistics at I-BioStat, KU Leuven. His research interests include Bayesian methods, longitudinal data analysis, statistical modelling, analysis of dental data, interval-censored data, misclassification issues, and clinical trials. He is the founding chair of the?Statistical Modelling Society, past-president of the?International Society for Clinical Biostatistics,?and fellow of?ISI?and?ASA.



Adaptive Survey Design

Adaptive Survey Design Author Barry Schouten
ISBN-10 9781351650014
Release 2017-07-28
Pages 236
Download Link Click Here

Adaptive survey designs (ASDs) provide a framework for data-driven tailoring of data collection procedures to different sample members, often for cost and bias reduction. People vary in how likely they are to respond and in how they respond. This variation leads to opportunities to selectively deploy design features in order to control both nonresponse and measurement errors. ASD aims at the optimal matching of design features and the characteristics of respondents given the survey budget. Such a goal is sensible, but ASD requires investment in more advanced technical systems and management infrastructure and asks for the collection of relevant auxiliary data. So what are current best practices in ASD? And is ASD worthwhile when the same auxiliary data are employed in the estimation afterwards? In this book, the authors provide answers to these questions, and much more.



Introduction to Computational Social Science

Introduction to Computational Social Science Author Claudio Cioffi-Revilla
ISBN-10 9783319501314
Release 2017-06-22
Pages 618
Download Link Click Here

This textbook provides a comprehensive and reader-friendly introduction to the field of computational social science (CSS). Presenting a unified treatment, the text examines in detail the four key methodological approaches of automated social information extraction, social network analysis, social complexity theory, and social simulation modeling. This updated new edition has been enhanced with numerous review questions and exercises to test what has been learned, deepen understanding through problem-solving, and to practice writing code to implement ideas. Topics and features: contains more than a thousand questions and exercises, together with a list of acronyms and a glossary; examines the similarities and differences between computers and social systems; presents a focus on automated information extraction; discusses the measurement, scientific laws, and generative theories of social complexity in CSS; reviews the methodology of social simulations, covering both variable- and object-oriented models.



Data Mining for the Social Sciences

Data Mining for the Social Sciences Author Paul Attewell
ISBN-10 9780520280984
Release 2015-05
Pages 252
Download Link Click Here

"We live, today, in world of big data. The amount of information collected on human behavior every day is staggering, and exponentially greater than at any time in the past. At the same time, we are inundated by stories of powerful algorithms capable of churning through this sea of data and uncovering patterns. These techniques go by many names - data mining, predictive analytics, machine learning - and they are being used by governments as they spy on citizens and by huge corporations are they fine-tune their advertising strategies. And yet social scientists continue mainly to employ a set of analytical tools developed in an earlier era when data was sparse and difficult to come by. In this timely book, Paul Attewell and David Monaghan provide a simple and accessible introduction to Data Mining geared towards social scientists. They discuss how the data mining approach differs substantially, and in some ways radically, from that of conventional statistical modeling familiar to most social scientists. They demystify data mining, describing the diverse set of techniques that the term covers and discussing the strengths and weaknesses of the various approaches. Finally they give practical demonstrations of how to carry out analyses using data mining tools in a number of statistical software packages. It is the hope of the authors that this book will empower social scientists to consider incorporating data mining methodologies in their analytical toolkits"--Provided by publisher.



Longitudinal Data Analysis for the Behavioral Sciences Using R

Longitudinal Data Analysis for the Behavioral Sciences Using R Author Jeffrey D. Long
ISBN-10 9781412982689
Release 2011-10-31
Pages 542
Download Link Click Here

This book is unique in its focus on showing students in the behavioral sciences how to analyze longitudinal data using R software. The book focuses on application, making it practical and accessible to students in psychology, education, and related fields, who have a basic foundation in statistics. It provides explicit instructions in R computer programming throughout the book, showing students exactly how a specific analysis is carried out and how output is interpreted.



The R Book

The R Book Author Michael J. Crawley
ISBN-10 9781118448960
Release 2012-11-07
Pages 1080
Download Link Click Here

Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)



Foundations of factor analysis

Foundations of factor analysis Author Stanley A. Mulaik
ISBN-10 1420099612
Release 2009-10-26
Pages 524
Download Link Click Here

Providing a practical, thorough understanding of how factor analysis works,Foundations of Factor Analysis, Second Editiondiscusses the assumptions underlying the equations and procedures of this method. It also explains the options in commercial computer programs for performing factor analysis and structural equation modeling. This long-awaited edition takes into account the various developments that have occurred since the publication of the original edition. New to the Second Edition A new chapter on the multivariate normal distribution, its general properties, and the concept of maximum-likelihood estimation More complete coverage of descriptive factor analysis and doublet factor analysis A rewritten chapter on analytic oblique rotation that focuses on the gradient projection algorithm and its applications Discussions on the developments of factor score indeterminacy A revised chapter on confirmatory factor analysis that addresses philosophy of science issues, model specification and identification, parameter estimation, and algorithm derivation Presenting the mathematics only as needed to understand the derivation of an equation or procedure, this textbook prepares students for later courses on structural equation modeling. It enables them to choose the proper factor analytic procedure, make modifications to the procedure, and produce new results.



Computational Social Psychology

Computational Social Psychology Author Robin R. Vallacher
ISBN-10 9781351701686
Release 2017-05-25
Pages 398
Download Link Click Here

Computational Social Psychology showcases a new approach to social psychology that enables theorists and researchers to specify social psychological processes in terms of formal rules that can be implemented and tested using the power of high speed computing technology and sophisticated software. This approach allows for previously infeasible investigations of the multi-dimensional nature of human experience as it unfolds in accordance with different temporal patterns on different timescales. In effect, the computational approach represents a rediscovery of the themes and ambitions that launched the field over a century ago. The book brings together social psychologists with varying topical interests who are taking the lead in this redirection of the field. Many present formal models that are implemented in computer simulations to test basic assumptions and investigate the emergence of higher-order properties; others develop models to fit the real-time evolution of people’s inner states, overt behavior, and social interactions. Collectively, the contributions illustrate how the methods and tools of the computational approach can investigate, and transform, the diverse landscape of social psychology.