Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Biomass Supply Chains for Bioenergy and Biorefining

Biomass Supply Chains for Bioenergy and Biorefining Author Jens Holm-Nielsen
ISBN-10 9781782423874
Release 2016-02-23
Pages 410
Download Link Click Here

Biomass Supply Chains for Bioenergy and Biorefining highlights the emergence of energy generation through the use of biomass and the ways it is becoming more widely used. The supply chains that produce the feedstocks, harvest, transport, store, and prepare them for combustion or refinement into other forms of fuel are long and complex, often differing from feedstock to feedstock. Biomass Supply Chains for Bioenergy and Biorefining considers every aspect of these supply chains, including their design, management, socioeconomic, and environmental impacts. The first part of the book introduces supply chains, biomass feedstocks, and their analysis, while the second part looks at the harvesting, handling, storage, and transportation of biomass. The third part studies the modeling of supply chains and their management, with the final section discussing, in minute detail, the supply chains involved in the production and usage of individual feedstocks, such as wood and sugar starches, oil crops, industrial biomass wastes, and municipal sewage stocks. Focuses on the complex supply chains of the various potential feedstocks for biomass energy generation Studies a wide range of biomass feedstocks, including woody energy crops, sugar and starch crops, lignocellulosic crops, oil crops, grass crops, algae, and biomass waste Reviews the modeling and optimization, standards, quality control and traceability, socioeconomic, and environmental impacts of supply chains



Advances in Biorefineries

Advances in Biorefineries Author Keith W. Waldron
ISBN-10 9780857097385
Release 2014-04-28
Pages 936
Download Link Click Here

Biorefineries are an essential technology in converting biomass into biofuels or other useful materials. Advances in Biorefineries provides a comprehensive overview of biorefining processing techniques and technologies, and the biofuels and other materials produced. Part one focuses on methods of optimizing the biorefining process and assessing its environmental and economic impact. It also looks at current and developing technologies for producing value-added materials. Part two goes on to explore these materials with a focus on biofuels and other value-added products. It considers the properties, limitations, and practical applications of these products and how they can be used to meet the increasing demand for renewable and sustainable fuels as an alternative to fossil fuels. Advances in Biorefineries is a vital reference for biorefinery/process engineers, industrial biochemists/chemists, biomass/waste scientists and researchers and academics in the field. A comprehensive and systematic reference on the advanced biomass recovery and conversion processes used in biorefineries Reviews developments in biorefining processes Discusses the wide range of value-added products from biorefineries, from biofuel to biolubricants and bioadhesives



Biomass Combustion Science Technology and Engineering

Biomass Combustion Science  Technology and Engineering Author Lasse Rosendahl
ISBN-10 9780857097439
Release 2013-04-04
Pages 320
Download Link Click Here

The utilisation of biomass is increasingly important for low- or zero-carbon power generation. Developments in conventional power plant fuel flexibility allow for both direct biomass combustion and co-firing with fossil fuels, while the integration of advanced technologies facilitates conversion of a wide range of biomass feedstocks into more readily combustible fuel. Biomass combustion science, technology and engineering reviews the science and technology of biomass combustion, conversion and utilisation. Part one provides an introduction to biomass supply chains and feedstocks, and outlines the principles of biomass combustion for power generation. Chapters also describe the categorisation and preparation of biomass feedstocks for combustion and gasification. Part two goes on to explore biomass combustion and co-firing, including direct combustion of biomass, biomass co-firing and gasification, fast pyrolysis of biomass for the production of liquids and intermediate pyrolysis technologies. Largescale biomass combustion and biorefineries are then the focus of part three. Following an overview of large-scale biomass combustion plants, key engineering issues and plant operation are discussed, before the book concludes with a chapter looking at the role of biorefineries in increasing the value of the end-products of biomass conversion. With its distinguished editor and international team of expert contributors, Biomass combustion science, technology and engineering provides a clear overview of this important area for all power plant operators, industrial engineers, biomass researchers, process chemists and academics working in this field. Reviews the science and technology of biomass combustion, conversion and utilisation Provides an introduction to biomass supply chains and feedstocks and outlines the principles of biomass combustion for power generation Describes the categorisation and preparation of biomass feedstocks for combustion and gasification



Bioenergy Systems for the Future

Bioenergy Systems for the Future Author Francesco Dalena
ISBN-10 9780081010266
Release 2017-06-19
Pages 628
Download Link Click Here

Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen examines the current advances in biomass conversion technologies for biofuels and biohydrogen production, including their advantages and challenges for real-world application and industrial-scale implementation. In its first part, the book explores the use of lignocellulosic biomass and agricultural wastes as feedstock, also addressing biomass conversion into biofuels, such as bioethanol, biodiesel, bio-methane, and bio-gasoline. The chapters in Part II cover several different pathways for hydrogen production, from biomass, including bioethanol and bio-methane reforming and syngas conversion. They also include a comparison between the most recent conversion technologies and conventional approaches for hydrogen production. Part III presents the status of advanced bioenergy technologies, such as applications of nanotechnology and the use of bio-alcohol in low-temperature fuel cells. The role of advanced bioenergy in a future bioeconomy and the integration of these technologies into existing systems are also discussed, providing a comprehensive, application-oriented overview that is ideal for engineering professionals, researchers, and graduate students involved in bioenergy. Explores the most recent technologies for advanced liquid and gaseous biofuels production, along with their advantages and challenges Presents real-life application of conversion technologies and their integration in existing systems Includes the most promising pathways for sustainable hydrogen production for energy applications



Handbook of Biofuels Production

Handbook of Biofuels Production Author Rafael Luque
ISBN-10 9780857090492
Release 2010-11-25
Pages 688
Download Link Click Here

In response to the global increase in the use of biofuels as substitute transportation fuels, advanced chemical, biochemical and thermochemical biofuels production routes are fast being developed. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The range of biofuels has also increased to supplement bioethanol and biodiesel production, with market developments leading to the increased production and utilisation of such biofuels as biosyngas, biohydrogen and biobutanol, among others. Handbook of biofuels production provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Part one reviews the key issues in the biofuels production chain, including feedstocks, sustainability assessment and policy development. Part two reviews chemical and biochemical conversion and in turn Part three reviews thermal and thermo-chemical conversion, with both sections detailing the wide range of processes and technologies applicable to the production of first, second and third generation biofuels. Finally, Part four reviews developments in the integration of biofuels production, including biorefineries and by-product valorisation, as well as the utilisation of biofuels in diesel engines. With its distinguished international team of contributors, Handbook of biofuels production is a standard reference for biofuels production engineers, industrial chemists and biochemists, plant scientists, academics and researchers in this area. A comprehensive and systematic reference on the range of biomass conversion processes and technologies Addresses the key issues in the biofuels production chain, including feedstocks, sustainability assessment and policy development Reviews chemical and bio-chemical conversion techniques as well as thermal and thermo-chemical conversion, detailing the range of processes and technologies applicable to biofuels production



Membrane Technologies for Biorefining

Membrane Technologies for Biorefining Author Alberto Figoli
ISBN-10 9780081004524
Release 2016-02-19
Pages 520
Download Link Click Here

Membrane Technologies for Biorefining highlights the best practices needed for the efficient and environmentally-compatible separation techniques that are fundamental to the conversion of biomass to fuels and chemicals for use as alternatives to petroleum refining. Membrane technologies are increasingly of interest in biorefineries due to their modest energy consumption, low chemical requirements, and excellent separation efficiency. The book provides researchers in academia and industry with an authoritative overview of the different types of membranes and highlights the ways in which they can be applied in biorefineries for the production of chemicals and biofuels. Topics have been selected to highlight both the variety of raw materials treated in biorefineries and the range of biofuel and chemical end-products. Presents the first book to focus specifically on membrane technologies in biorefineries Provides a comprehensive overview of the different types of membranes and highlight ways in which they can be applied in biorefineries for the production of chemicals and biofuels Topics selected highlight both the variety of raw materials treated using membranes in biorefineries and the range of biofuel and chemical end-products



Geothermal Power Generation

Geothermal Power Generation Author Ron DiPippo
ISBN-10 9780081003442
Release 2016-05-25
Pages 854
Download Link Click Here

Geothermal Power Generation: Developments and Innovation provides an update to the advanced energy technologies that are urgently required to meet the challenges of economic development, climate change mitigation, and energy security. As geothermal resources are considered renewable and can be used to generate baseload electricity while producing very low levels of greenhouse gas emissions, they can play a key role in future energy needs. This book, edited by a highly respected expert, provides a comprehensive overview of the major aspects of geothermal power production. The chapters, contributed by specialists in their respective areas, cover resource discovery, resource characterization, energy conversion systems, and design and economic considerations. The final section provides a range of fascinating case studies from across the world, ranging from Larderello to Indonesia. Users will find this to be an essential text for research and development professionals and engineers in the geothermal energy industry, as well as postgraduate researchers in academia who are working on geothermal energy. Provides readers with a comprehensive and systematic overview of geothermal power generation Presents an update to the advanced energy technologies that are urgently required to meet the challenges of economic development, climate change mitigation, and energy security Edited by a world authority in the field, with chapters contributed by experts in their particular areas Includes comprehensive case studies from across the world, ranging from Larderello to Indonesia



Magnetic Fusion Energy

Magnetic Fusion Energy Author George Neilson
ISBN-10 9780081003268
Release 2016-06-02
Pages 632
Download Link Click Here

Magnetic Fusion Energy: From Experiments to Power Plants is a timely exploration of the field, giving readers an understanding of the experiments that brought us to the threshold of the ITER era, as well as the physics and technology research needed to take us beyond ITER to commercial fusion power plants. With the start of ITER construction, the world’s magnetic fusion energy (MFE) enterprise has begun a new era. The ITER scientific and technical (S&T) basis is the result of research on many fusion plasma physics experiments over a period of decades. Besides ITER, the scope of fusion research must be broadened to create the S&T basis for practical fusion power plants, systems that will continuously convert the energy released from a burning plasma to usable electricity, operating for years with only occasional interruptions for scheduled maintenance. Provides researchers in academia and industry with an authoritative overview of the significant fusion energy experiments Considers the pathway towards future development of magnetic fusion energy power plants Contains experts contributions from editors and others who are well known in the field



Sustainable Energy from Salinity Gradients

Sustainable Energy from Salinity Gradients Author Andrea Cipollina
ISBN-10 9780081003237
Release 2016-03-01
Pages 362
Download Link Click Here

Salinity gradient energy, also known as blue energy and osmotic energy, is the energy obtainable from the difference in salt concentration between two feed solutions, typically sea water and river water. It is a large-scale renewable resource that can be harvested and converted to electricity. Efficient extraction of this energy is not straightforward, however. Sustainable Energy from Salinity Gradients provides a comprehensive review of resources, technologies and applications in this area of fast-growing interest. Key technologies covered include pressure retarded osmosis, reverse electrodialysis and accumulator mixing. Environmental and economic aspects are also considered, together with the possible synergies between desalination and salinity gradient energy technologies. Sustainable Energy from Salinity Gradients is an essential text for R&D professionals in the energy & water industry interested in salinity gradient power and researchers in academia from post-graduate level upwards. For more than ten years the Editors have been sharing substantial research activities in the fields of renewable energy and desalination, successfully participating to a number of European Union research projects and contributing to the relevant scientific literature with more than 100 papers and 2 books on Desalination technologies and their coupling with Renewable Energy. They are intensely working in the field of Salinity Gradient Power, carrying out research with specific focus o.n open-loop and closed-loop reverse electrodialysis and pressure retarded osmosis. Covers applications of pressure retarded osmosis, reverse electrodialysis, and capacitive mixing for salinity gradient power in one convenient volume Presents the environmental aspects and economics of salinity gradient energy Explores possible synergies between desalination and salinity gradient energy



Absorption Based Post Combustion Capture of Carbon Dioxide

Absorption Based Post Combustion Capture of Carbon Dioxide Author Paul Feron
ISBN-10 9780081005156
Release 2016-05-27
Pages 814
Download Link Click Here

Absorption-Based Post-Combustion Capture of Carbon Dioxide provides a comprehensive and authoritative review of the use of absorbents for post-combustion capture of carbon dioxide. As fossil fuel-based power generation technologies are likely to remain key in the future, at least in the short- and medium-term, carbon capture and storage will be a critical greenhouse gas reduction technique. Post-combustion capture involves the removal of carbon dioxide from flue gases after fuel combustion, meaning that carbon dioxide can then be compressed and cooled to form a safely transportable liquid that can be stored underground. Provides researchers in academia and industry with an authoritative overview of the amine-based methods for carbon dioxide capture from flue gases and related processes Editors and contributors are well known experts in the field Presents the first book on this specific topic



The Performance of Photovoltaic PV Systems

The Performance of Photovoltaic  PV  Systems Author Nicola Pearsall
ISBN-10 9781782423546
Release 2016-10-15
Pages 366
Download Link Click Here

The Performance of Photovoltaic (PV) Systems: Modelling, Measurement and Assessment explores the system lifetime of a PV system and the energy output of the system over that lifetime. The book concentrates on the prediction, measurement, and assessment of the performance of PV systems, allowing the reader to obtain a thorough understanding of the performance issues and progress that has been made in optimizing system performance. Provides unique insights into the performance of photovoltaic systems Includes comprehensive and systematic coverage of a fascinating area in energy Written by an expert team of authors and a respected editor



Materials for Ultra Supercritical and Advanced Ultra Supercritical Power Plants

Materials for Ultra Supercritical and Advanced Ultra Supercritical Power Plants Author Augusto Di Gianfrancesco
ISBN-10 9780081005583
Release 2016-09-01
Pages 900
Download Link Click Here

Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants provides researchers in academia and industry with an essential overview of the stronger high-temperature materials required for key process components, such as membrane wall tubes, high-pressure steam piping and headers, superheater tubes, forged rotors, cast components, and bolting and blading for steam turbines in USC power plants. Advanced materials for future advanced ultra-supercritical power plants, such as superalloys, new martensitic and austenitic steels, are also addressed. Chapters on international research directions complete the volume. The transition from conventional subcritical to supercritical thermal power plants greatly increased power generation efficiency. Now the introductions of the ultra-supercritical (USC) and, in the near future, advanced ultra-supercritical (A-USC) designs are further efforts to reduce fossil fuel consumption in power plants and the associated carbon dioxide emissions. The higher operating temperatures and pressures found in these new plant types, however, necessitate the use of advanced materials. Provides researchers in academia and industry with an authoritative and systematic overview of the stronger high-temperature materials required for both ultra-supercritical and advanced ultra-supercritical power plants Covers materials for critical components in ultra-supercritical power plants, such as boilers, rotors, and turbine blades Addresses advanced materials for future advanced ultra-supercritical power plants, such as superalloys, new martensitic and austenitic steels Includes chapters on technologies for welding technologies



Handbook of Generation IV Nuclear Reactors

Handbook of Generation IV Nuclear Reactors Author Igor Pioro
ISBN-10 9780081001622
Release 2016-06-09
Pages 940
Download Link Click Here

Handbook of Generation IV Nuclear Reactors presents information on the current fleet of Nuclear Power Plants (NPPs) with water-cooled reactors (Generation III and III+) (96% of 430 power reactors in the world) that have relatively low thermal efficiencies (within the range of 32 36%) compared to those of modern advanced thermal power plants (combined cycle gas-fired power plants – up to 62% and supercritical pressure coal-fired power plants – up to 55%). Moreover, thermal efficiency of the current fleet of NPPs with water-cooled reactors cannot be increased significantly without completely different innovative designs, which are Generation IV reactors. Nuclear power is vital for generating electrical energy without carbon emissions. Complete with the latest research, development, and design, and written by an international team of experts, this handbook is completely dedicated to Generation IV reactors. Presents the first comprehensive handbook dedicated entirely to generation IV nuclear reactors Reviews the latest trends and developments Complete with the latest research, development, and design information in generation IV nuclear reactors Written by an international team of experts in the field



Handbook of Biofuels Production

Handbook of Biofuels Production Author Rafael Luque
ISBN-10 9780081004562
Release 2016-05-19
Pages 770
Download Link Click Here

Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels’ production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. Provides systematic and detailed coverage of the processes and technologies being used for biofuel production Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage Reviews the production of both first and second generation biofuels Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks



Process Intensification

Process Intensification Author David Reay
ISBN-10 9780080983059
Release 2013-06-05
Pages 624
Download Link Click Here

Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems. Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint. This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems. No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology



Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels Chemicals and Polymers

Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels  Chemicals  and Polymers Author Shang-Tian Yang
ISBN-10 9781118641941
Release 2013-05-24
Pages 488
Download Link Click Here

For researchers already familiar with biomass conversion technologies and for professionals in other fields, such as agriculture, food, and chemical industries, here is a comprehensive review of the emerging biorefinery industry. The book's content has been conveniently organized according to technologies (biomass feedstock and pretreatment, hydrolytic enzymes in biorefinery, and biofuels), with each chapter highlighting an important biobased industrial product. For undergraduate and graduate students, the book is a thorough introduction to biorefinery technologies.



Biomass and Bioenergy

Biomass and Bioenergy Author Khalid Rehman Hakeem
ISBN-10 9783319076416
Release 2014-08-25
Pages 367
Download Link Click Here

Biomass obtained from agricultural residues or forest can be used to produce different materials and bioenergy required in a modern society. As compared to other resources available, biomass is one of the most common and widespread resources in the world. Thus, biomass has the potential to provide a renewable energy source, both locally and across large areas of the world. It is estimated that the total investment in the biomass sector between 2008 and 2021 will reach the large sum of $104 billion. Presently bioenergy is the most important renewable energy option and will remain so the near and medium-term future. Previously several countries try to explore the utilization of biomass in bioenergy and composite sector. Biomass has the potential to become the world’s largest and most sustainable energy source and will be very much in demand. Bioenergy is based on resources that can be utilized on a sustainable basis all around the world and can thus serve as an effective option for the provision of energy services. In addition, the benefits accrued go beyond energy provision, creating unique opportunities for regional development. The present book will provide an up-to-date account of non-wood, forest residues, agricultural biomass (natural fibers), and energy crops together with processing, properties and its applications to ensure biomass utilization and reuse. All aspects of biomass and bioenergy and their properties and applications will be critically re-examined. The book consists of three sections, presenting Non wood and forest products from forestry, arboriculture activities or from wood processing, agricultural biomass (natural fibers) from agricultural harvesting or processing and finally energy crops: high yield crops and grasses grown especially for energy production.