Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.


Biomechanics Author Y. C. Fung
ISBN-10 9781475717525
Release 2013-06-29
Pages 433
Download Link Click Here

The motivation for writing aseries ofbooks on biomechanics is to bring this rapidly developing subject to students of bioengineering, physiology, and mechanics. In the last decade biomechanics has become a recognized disci pline offered in virtually all universities. Yet there is no adequate textbook for instruction; neither is there a treatise with sufficiently broad coverage. A few books bearing the title of biomechanics are too elementary, others are too specialized. I have long feIt a need for a set of books that will inform students of the physiological and medical applications of biomechanics, and at the same time develop their training in mechanics. We cannot assume that all students come to biomechanics already fully trained in fluid and solid mechanics; their knowledge in these subjects has to be developed as the course proceeds. The scheme adopted in the present series is as follows. First, some basic training in mechanics, to a level about equivalent to the first seven chapters of the author's A First Course in Continuum Mechanics (Prentice-Hall,lnc. 1977), is assumed. We then present some essential parts of biomechanics from the point of view of bioengineering, physiology, and medical applications. In the meantime, mechanics is developed through a sequence of problems and examples. The main text reads like physiology, while the exercises are planned like a mechanics textbook. The instructor may fil1 a dual role: teaching an essential branch of life science, and gradually developing the student's knowledge in mechanics.


Biomechanics Author Y.C. Fung
ISBN-10 9781441968562
Release 2013-03-20
Pages 570
Download Link Click Here

Biomechanics aims to explain the mechanics oflife and living. From molecules to organisms, everything must obey the laws of mechanics. Clarification of mechanics clarifies many things. Biomechanics helps us to appreciate life. It sensitizes us to observe nature. It is a tool for design and invention of devices to improve the quality of life. It is a useful tool, a simple tool, a valuable tool, an unavoidable tool. It is a necessary part of biology and engineering. The method of biomechanics is the method of engineering, which consists of observation, experimentation, theorization, validation, and application. To understand any object, we must know its geometry and materials of construc tion, the mechanical properties of the materials involved, the governing natural laws, the mathematical formulation of specific problems and their solutions, and the results of validation. Once understood, one goes on to develop applications. In my plan to present an outline of biomechanics, I followed the engineering approach and used three volumes. In the first volume, Biomechanics: Mechanical Properties of Living Tissues, the geometrical struc ture and the rheological properties of various materials, tissues, and organs are presented. In the second volume, Biodynamics: Circulation, the physiology of blood circulation is analyzed by the engineering method.


Biomechanics Author Y.C. Fung
ISBN-10 9781475726961
Release 2013-04-17
Pages 572
Download Link Click Here

The theory of blood circulation is the oldest and most advanced branch of biomechanics, with roots extending back to Huangti and Aristotle, and with contributions from Galileo, Santori, Descartes, Borelli, Harvey, Euler, Hales, Poiseuille, Helmholtz, and many others. It represents a major part of humanity's concept of itself. This book presents selected topics of this great body of ideas from a historical perspective, binding important experiments together with mathematical threads. The objectives and scope of this book remain the same as in the first edition: to present a treatment of circulatory biomechanics from the stand points of engineering, physiology, and medical science, and to develop the subject through a sequence of problems and examples. The name is changed from Biodynamics: Circulation to Biomechanics: Circulation to unify the book with its sister volumes, Biomechanics: Mechanical Properties of Living Tissues, and Biomechanics: Motion, Flow, Stress, and Growth. The major changes made in the new edition are the following: When the first edition went to press in 1984, the question of residual stress in the heart was raised for the first time, and the lung was the only organ analyzed on the basis of solid morphologic data and constitutive equations. The detailed analysis of blood flow in the lung had been done, but the physiological validation experiments had not yet been completed.

Tissue Mechanics

Tissue Mechanics Author Stephen C. Cowin
ISBN-10 9780387499857
Release 2007-12-22
Pages 682
Download Link Click Here

The structures of living tissues are continually changing due to growth and response to the tissue environment, including the mechanical environment. Tissue Mechanics is an in-depth look at the mechanics of tissues. Tissue Mechanics describes the nature of the composite components of a tissue, the cellular processes that produce these constituents, the assembly of the constituents into a hierarchical structure, and the behavior of the tissue’s composite structure in the adaptation to its mechanical environment. Organized as a textbook for the student needing to acquire the core competencies, Tissue Mechanics will meet the demands of advanced undergraduate or graduate coursework in Biomedical Engineering, as well as, Chemical, Civil, and Mechanical Engineering. Key features: Detailed Illustrations Example problems, including problems at the end of sections A separate solutions manual available for course instructors A website ( that has been established to provide supplemental material for the book, including downloadable additional chapters on specific tissues, downloadable PowerPoint presentations of all the book's chapters, and additional exercises and examples for the existing chapters. About the Authors: Stephen C. Cowin is a City University of New York Distinguished Professor, Departments of Biomedical and Mechanical Engineering, City College of the City University of New York and also an Adjunct Professor of Orthopaedics, at the Mt. Sinai School of Medicine in New York, New York. In 1985 he received the Society of Tulane Engineers and Lee H. Johnson Award for Teaching Excellence and a recipient of the European Society of Biomechanics Research Award in 1994. In 1999 he received the H. R. Lissner medal of the ASME for contributions to biomedical engineering. In 2004 he was elected to the National Academy of Engineering (NAE) and he also received the Maurice A. Biot medal of the American Society of Civil Engineers (ASCE). Stephen B. Doty is a Senior Scientist at Hospital for Special Surgery, New York, New York and Adjunct Professor, School of Dental and Oral Surgery, Columbia University, New York, NY. He has over 100 publications in the field of anatomy, developmental biology, and the physiology of skeletal and connective tissues. His honors include several commendations for participation in the Russian/NASA spaceflights, the Spacelab Life Science NASA spaceflights, and numerous Shuttle missions that studied the influence of spaceflight on skeletal physiology. He presently is on the scientific advisory board of the National Space Biomedical Research Institute, Houston, Texas.

Cardiovascular Solid Mechanics

Cardiovascular Solid Mechanics Author Jay D. Humphrey
ISBN-10 9780387215761
Release 2013-06-29
Pages 758
Download Link Click Here

This text presents a general introduction to soft tissue biomechanics. One of its primary goals is to introduce basic analytical, experimental and computational methods. In doing so, it enables readers to gain a relatively complete understanding of the biomechanics of the heart and vasculature.

Fundamentals of Biomechanics

Fundamentals of Biomechanics Author Nihat Özkaya
ISBN-10 9783319447384
Release 2016-12-24
Pages 454
Download Link Click Here

This textbook integrates the classic fields of mechanics—statics, dynamics, and strength of materials—using examples from biology and medicine. The book is excellent for teaching either undergraduates in biomedical engineering programs or health care professionals studying biomechanics at the graduate level. Extensively revised from a successful third edition, Fundamentals of Biomechanics features a wealth of clear illustrations, numerous worked examples, and many problem sets. The book provides the quantitative perspective missing from more descriptive texts, without requiring an advanced background in mathematics. It will be welcomed for use in courses such as biomechanics and orthopedics, rehabilitation and industrial engineering, and occupational or sports medicine. This book: Introduces the fundamental concepts, principles, and methods that must be understood to begin the study of biomechanics Reinforces basic principles of biomechanics with repetitive exercises in class and homework assignments given throughout the textbook Includes over 100 new problem sets with solutions and illustrations

Biomechanics of Living Organs

Biomechanics of Living Organs Author Yohan Payan
ISBN-10 9780128040607
Release 2017-05-01
Pages 400
Download Link Click Here

Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling is the first book to cover finite element biomechanical modeling of each organ in the human body. This collection of chapters from the leaders in the field focuses on the constitutive laws for each organ. Each author introduces the state-of-the-art concerning constitutive laws and then illustrates the implementation of such laws with Finite Element Modeling of these organs. The focus of each chapter is on instruction, careful derivation and presentation of formulae, and methods. When modeling tissues, this book will help users determine modeling parameters and the variability for particular populations. Chapters highlight important experimental techniques needed to inform, motivate, and validate the choice of strain energy function or the constitutive model. Remodeling, growth, and damage are all covered, as is the relationship of constitutive relationships of organs to tissue and molecular scale properties (as net organ behavior depends fundamentally on its sub components). This book is intended for professionals, academics, and students in tissue and continuum biomechanics. Covers hyper elastic frameworks for large tissue deformations Considers which strain energy functions are the most appropriate to model the passive and active states of living tissue Evaluates the physical meaning of proposed energy functions

Basic Orthopaedic Biomechanics

Basic Orthopaedic Biomechanics Author Van C. Mow
ISBN-10 UOM:39015034838188
Release 1991
Pages 453
Download Link Click Here

Reviews biomechanical laws governing natural human locomotion and the movement of prosthetic joints. Provides a synthesis of clinical and research data on muscle and joint loads; biomechanical forces; stress-strain behaviours; biomechanics of the spine and of artificial joint fixation and more.

The World of Nano Biomechanics

The World of Nano Biomechanics Author Atsushi Ikai
ISBN-10 9780444636874
Release 2016-11-18
Pages 340
Download Link Click Here

The World of Nano-Biomechanics, Second Edition, focuses on the remarkable progress in the application of force spectroscopy to molecular and cellular biology that has occurred since the book's first edition in 2008. The initial excitement of seeing and touching a single molecule of protein/DNA is now culminating in the development of various ways to manipulate molecules and cells almost at our fingertips, enabling live cell operations. Topics include the development of molecular biosensors, mechanical diagnosis, cellular-level wound healing, and a look into the advances that have been made in our understanding of the significance of mechanical rigidity/flexibility of protein/DNA structure for the manifestation of biological activities. The book begins with a summary of the results of basic mechanics to help readers who are unfamiliar with engineering mechanics. Then, representative results obtained on biological macromolecules and structures, such as proteins, DNA, RNA, polysaccharides, lipid membranes, subcellular organelles, and live cells are discussed. New to this second edition are recent developments in three important applications, i.e., advanced AFM-data analysis, high-resolution mechanical biosensing, and the use of cell mechanics for medical diagnosis. Explains the basic physical concepts and mathematics of elementary mechanics needed to understand and perform experimental work on small-scale biological samples Presents recent developments of force-based biosensing Includes novel applications of nano-biomechanics to the medical field


Biodynamics Author Y. C. Fung
ISBN-10 9781475738841
Release 2013-04-18
Pages 404
Download Link Click Here

This book is a continuation ofmy Biomechanics.The first volume deals with the mechanical properties of living tissues. The present volume deals with the mechanics ofcirculation. A third volume willdeal with respiration, fluid balance, locomotion, growth, and strength. This volume is called Bio dynamics in order to distinguish it from the first volume. The same style is followed. My objective is to present the mechanical aspects ofphysiology in precise terms ofmechanics so that the subject can become as lucid as physics. The motivation of writing this series of books is, as I have said in the preface to the first volume, to bring biomechanics to students ofbioengineer ing, physiology, medicine, and mechanics. I have long felt a need for a set of books that willinform the students ofthe physiological and medical applica tions ofbiomechanics,and at the same time develop their training in mechan ics. In writing these books I have assumed that the reader already has some basic training in mechanics, to a level about equivalent to the first seven chapters of my First Course in Continuum Mechanics (Prentice Hall, 1977). The subject is then presented from the point of view of life science while mechanics is developed through a sequence of problems and examples. The main text reads like physiology, while the exercises are planned like a mechanics textbook.The instructor may filla dual role :teaching an essential branch of life science, and gradually developing the student's knowledge in mechanics.

A First Course in Continuum Mechanics

A First Course in Continuum Mechanics Author
ISBN-10 7302121389
Release 1994
Pages 328
Download Link Click Here

A First Course in Continuum Mechanics has been writing in one form or another for most of life. You can find so many inspiration from A First Course in Continuum Mechanics also informative, and entertaining. Click DOWNLOAD or Read Online button to get full A First Course in Continuum Mechanics book for free.

Design of Artificial Human Joints Organs

Design of Artificial Human Joints   Organs Author Subrata Pal
ISBN-10 9781461462552
Release 2013-08-31
Pages 419
Download Link Click Here

​Design of Artificial Human Joints & Organs is intended to present the basics of the normal systems and how, due to aging, diseases or trauma, body parts may need to be replaced with manmade materials. The movement of the body generates forces in various work situations and also internally at various joints, muscles and ligaments. It is essential to figure out the forces, moments, pressure etc to design replacements that manage these stresses without breaking down. The mechanical characterization of the hard and the soft tissues are presented systematically using the principles of solid mechanics. The viscoelastic properties of the tissue will also discussed. This text covers the design science and methodology from concept to blueprint to the final component being replaced. Each chapter will be a brief overview of various joint/organ replacement systems. Engineers working on artificial joints and organs, as well as students of Mechanical Engineering and Biomedical Engineering are the main intended audience, however, the pedagogy is simple enough for those who are learning the subject for the first time.

Biomechanics of the Female Pelvic Floor

Biomechanics of the Female Pelvic Floor Author Lennox Hoyte
ISBN-10 9780128032299
Release 2016-03-01
Pages 468
Download Link Click Here

Biomechanics of the Female Pelvic Floor, Second Edition, is the first book to specifically focus on this key part of women’s health, combining engineering and clinical expertise. This edited collection will help readers understand the risk factors for pelvic floor dysfunction, the mechanisms of childbirth related injury, and how to design intrapartum preventative strategies, optimal repair techniques, and prostheses. The authors have combined their expertise to create a thorough, comprehensive view of female pelvic floor biomechanics in order to help different disciplines discuss, research, and drive solutions to pressing problems. The book includes a common language for the design, conduct, and reporting of research studies in female PFD, and will be of interest to biomechanical and prosthetic tissue engineers and clinicians interested in female pelvic floor dysfunction, including urologists, urogynecologists, maternal fetal medicine specialists, and physical therapists. Contains contributions from leading bioengineers and clinicians, and provides a cohesive multidisciplinary view of the field Covers causes, risk factors, and optimal treatment for pelvic floor biomechanics Combines anatomy, imaging, tissue characteristics, and computational modeling development in relation to pelvic floor biomechanics

An Introduction to Biomechanics

An Introduction to Biomechanics Author Jay D. Humphrey
ISBN-10 9781493926237
Release 2015-07-25
Pages 692
Download Link Click Here

This book covers the fundamentals of biomechanics. Topics include bio solids, biofluids, stress, balance and equilibrium. Students are encouraged to contextualize principles and exercises within a “big picture” of biomechanics. This is an ideal book for undergraduate students with interests in biomedical engineering.

Biomedical Composites

Biomedical Composites Author Luigi Ambrosio
ISBN-10 9781845697372
Release 2009-11-23
Pages 648
Download Link Click Here

Biocomposites are widely used in the medical industry to repair and restore bone, tooth, cartilage skin and other tissues. Biomedical composites, provides a thorough review of the current status, recent progress and future trends in composites for biomedical applications. Part one discusses the fundamentals of biocomposites with chapters on natural composites, design and fabrication of biocomposites, and hard and soft tissue applications of biocomposites. Part two then reviews applications of biocomposites. Chapters discuss composites for bone repair, composite coatings for implants, composites for spinal implants, injectable composites and composites for tissue engineered scaffolds. Chapters in part three discuss the biocompatibility, mechanical behaviour and failure of biocomposites with such topics as cellular response, testing of biocomposites and tribology of biocomposites. Finally part four reviews the future for biocomposites with chapters on nano-structured biocomposites, developing biocomposites as scaffolds and biocomposites in tissue engineering and regenerative medicine. With its distinguished editor and team of international contributors, Biomedical composites is an essential reference to materials scientists and researchers in industry and academia, as well as all those concerned with this increasingly important field. Provides a thorough review of the current status, recent progress and future trends in composites for biomedical applications Discusses the fundamentals of biocomposites with chapters on natural composites, design and fabrication of biocomposites and their applications Chapters address composites for bone repair, spinal implants and various other applications and discuss biocompatability, mechanical behaviour and failure of biocomposites

Data Book on Mechanical Properties of Living Cells Tissues and Organs

Data Book on Mechanical Properties of Living Cells  Tissues  and Organs Author Hiroyuki Abe
ISBN-10 9784431658627
Release 2013-06-29
Pages 436
Download Link Click Here

A research project entitled Biomechanics of Structure and Function of Living Cells, Tissues, and Organs was launched in Japan in 1992. This data book presents the original, up-to-date information resulting from the research project, supplemented by some of the important basic data published previously. The aim of collecting the information is to offer accurate and useful data on the mechanical properties of living materials to biomechanical scientists, biomedical engineers, medical scientists, and clinicians. The data are presented in graphs and tables (one type of data per page) arranged in an easily accessible manner, along with details of the origin of the material and the experimental method. Together with its two companion volumes, Biomechanics: Functional Adaptation and Remodeling and Computational Biomechanics, the Data Book on Mechanical Properties of Living Cells, Tissues, and Organs is a timely and valuable contribution to the rapidly growing field of biomechanics.

Introductory Biomechanics

Introductory Biomechanics Author C. Ross Ethier
ISBN-10 9781139461825
Release 2007-03-12
Download Link Click Here

Introductory Biomechanics is a new, integrated text written specifically for engineering students. It provides a broad overview of this important branch of the rapidly growing field of bioengineering. A wide selection of topics is presented, ranging from the mechanics of single cells to the dynamics of human movement. No prior biological knowledge is assumed and in each chapter, the relevant anatomy and physiology are first described. The biological system is then analyzed from a mechanical viewpoint by reducing it to its essential elements, using the laws of mechanics and then tying mechanical insights back to biological function. This integrated approach provides students with a deeper understanding of both the mechanics and the biology than from qualitative study alone. The text is supported by a wealth of illustrations, tables and examples, a large selection of suitable problems and hundreds of current references, making it an essential textbook for any biomechanics course.