Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Biopolymers from Renewable Resources

Biopolymers from Renewable Resources Author David L. Kaplan
ISBN-10 9783662036808
Release 2013-03-09
Pages 420
Download Link Click Here

Biopolymers from Renewable Resources is a compilation of information on the diverse and useful polymers derived from agricultural, animal, and microbial sources. The volume provides insight into the diversity of polymers obtained directly from, or derived from, renewable resources. The beneficial aspects of utilizing polymers from renewable resources, when considering synthesis, pro cessing, disposal, biodegradability, and overall material life-cycle issues, suggests that this will continue to be an important and growing area of interest. The individual chapters provide information on synthesis, processing and properties for a variety of polyamides, polysaccharides, polyesters and polyphenols. The reader will have a single volume that provides a resource from which to gain initial insights into this diverse field and from which key references and contacts can be drawn. Aspects of biology, biotechnology, polymer synthesis, polymer processing and engineering, mechanical properties and biophysics are addressed to varying degrees for the specific biopolymers. The volume can be used as a reference book or as a teaching text. At the more practical level, the range of important materials derived from renewable resources is both extensive and impressive. Gels, additives, fibers, coatings and films are generated from a variety of the biopolymers reviewed in this volume. These polymers are used in commodity materials in our everyday lives, as well as in specialty products.



Monomers Polymers and Composites from Renewable Resources

Monomers  Polymers and Composites from Renewable Resources Author Mohamed Naceur Belgacem
ISBN-10 0080560512
Release 2011-10-10
Pages 560
Download Link Click Here

The progressive dwindling of fossil resources, coupled with the drastic increase in oil prices, have sparked a feverish activity in search of alternatives based on renewable resources for the production of energy. Given the predominance of petroleum- and carbon-based chemistry for the manufacture of organic chemical commodities, a similar preoccupation has recently generated numerous initiatives aimed at replacing these fossil sources with renewable counterparts. In particular, major efforts are being conducted in the field of polymer science and technology to prepare macromolecular materials based on renewable resources. The concept of the bio-refinery, viz. the rational exploitation of the vegetable biomass in terms of the separation of its components and their utilisation as such, or after suitable chemical modifications, is thus gaining momentum and considerable financial backing from both the public and private sectors. This collection of chapters, each one written by internationally recognised experts in the corresponding field, covers in a comprehensive fashion all the major aspects related to the synthesis, characterization and properties of macromolecular materials prepared using renewable resources as such, or after appropriate modifications. Thus, monomers such as terpenes and furans, oligomers like rosin and tannins, and polymers ranging from cellulose to proteins and including macromolecules synthesized by microbes, are discussed with the purpose of showing the extraordinary variety of materials that can be prepared from their intelligent exploitation. Particular emphasis has been placed on recent advances and imminent perspectives, given the incessantly growing interest that this area is experiencing in both the scientific and technological realms. Discusses bio-refining with explicit application to materials Replete with examples of applications of the concept of sustainable development Presents an impressive variety of novel macromolecular materials



Biopolymer Grafting Applications

Biopolymer Grafting  Applications Author Vijay Kumar Thakur
ISBN-10 9780128104637
Release 2017-09-19
Pages 540
Download Link Click Here

Biopolymer Grafting: Applications presents the latest research and developments in the practical application of these methods in industry, both to enable polymer scientists and engineers to keep up with the latest research trends, as well as to propose ideas for further research and application. Research into bio-based polymers has become increasingly prevalent. However, due to challenges related to the properties of these materials compared to synthetic polymers—such as their resistance to chemicals or weather—uptake has not dramatically increased yet. As a result, improvements in surface modification of bio-polymers through graft copolymerization are enormously important, because they will widen the scope of their applications. Relevant industries for application of these methods include automotive, construction, food, packaging, agriculture, textiles and paper. This book provides an overview of the developments made in the area of biopolymer-based graft polymers. Advantages, disadvantages and suggestions for future works are discussed, assisting materials scientists and researchers in mapping out the future of these new "green" materials through value addition to enhance their use. Helps researchers and product developers understand the applications and limitations of biopolymer copolymers or copolymers of natural polymers Offers a roadmap to future applications development in a range of different industries, including automotive, biomedical and packaging Increases familiarity with a range of biopolymer grafting processes, enabling materials scientists and engineers to improve material properties and widen the range of potential biopolymer applications



Biopolymer Nanocomposites

Biopolymer Nanocomposites Author Alain Dufresne
ISBN-10 9781118609903
Release 2013-07-18
Pages 696
Download Link Click Here

Sets forth the techniques needed to create a vast array of useful biopolymer nanocomposites Interest in biopolymer nanocomposites is soaring. Not only are they green and sustainable materials, they can also be used to develop a broad range of useful products with special properties, from therapeutics to coatings to packaging materials. With contributions from an international team of leading nanoscientists and materials researchers, this book draws together and reviews the most recent developments and techniques in biopolymer nano-composites. It describes the preparation, processing, properties, and applications of bio- polymer nanocomposites developed from chitin, starch, and cellulose, three renewable resources. Biopolymer Nanocomposites features a logical organization and approach that make it easy for readers to take full advantage of the latest science and technology in designing these materials and developing new products and applications. It begins with a chapter reviewing our current understanding of bionanocomposites. Next, the book covers such topics as: Morphological and thermal investigations of chitin-based nanocomposites Applications of starch nanoparticle and starch-based bionanocomposites Spectroscopic characterization of renewable nanoparticles and their composites Nanocellulosic products and their applications Protein-based nanocomposites for food packaging Throughout the book, detailed case studies of industrial applications underscore the unique challenges and opportunities in developing and working with biopolymer nanocomposites. There are also plenty of figures to help readers fully grasp key concepts and techniques. Exploring the full range of applications, Biopolymer Nanocomposites is recommended for researchers in a broad range of industries and disciplines, including biomedical engineering, materials science, physical chemistry, chemical engineering, and polymer science. All readers will learn how to create green, sustainable products and applications using these tremendously versatile materials.



Handbook of Biopolymer Based Materials

Handbook of Biopolymer Based Materials Author Sabu Thomas
ISBN-10 9783527652471
Release 2013-04-16
Pages 988
Download Link Click Here

This first systematic scientific reference in the area of micro- and nanostructured biopolymer systems discusses in two volumes the morphology, structure, dynamics, properties and applications of all important biopolymers, as well as their blends, composites, interpenetrating networks and gels. Selected leading researchers from industry, academia, government and private research institutions around the globe comprehensively review recent accomplishments in the field. They examine the current state of the art, new challenges, and opportunities, discussing all the synthetic routes to the generation of both micro- and nano-morphologies, as well as the synthesis, characterization and application of porous biopolymers. An outstanding resource for anyone involved in the fi eld of eco-friendly biomaterials for advanced technologies.



Industrial Applications of Marine Biopolymers

Industrial Applications of Marine Biopolymers Author Parappurath Narayanan Sudha
ISBN-10 9781315313511
Release 2017-07-06
Pages 608
Download Link Click Here

Industrial Applications of Marine Biopolymers presents different classes of marine biopolymers and their industrial applications, demonstrating the precious value of ocean resources to society. This timely volume discusses the exceedingly useful polymers derived from these materials that are biodegradable, biocompatible, and at times water soluble. Direct use or chemically modified forms of such biomaterials have many chemical sites, making them suitable for varied types of industrial applications. In addition, this book also addresses current global challenges of conservation, including extended drought conditions and the need for improved agricultural methods, together with new bio-medical developments. It is suitable for anyone who has an interest in the industrial applications of biopolymers.



Technology and Applications of Polymers Derived from Biomass

Technology and Applications of Polymers Derived from Biomass Author Syed Ali Ashter
ISBN-10 9780323511162
Release 2017-11-22
Pages 286
Download Link Click Here

Technology and Applications of Polymers Derived from Biomass explores the range of different possible routes from biomass to polymeric materials, including the value and limitations of using biomass in material applications and a comparison of petrochemical-derived polymers and bio-based polymers. The book discusses biomass sources, types, chemistry and handling concerns. It covers the manufacture of industrial chemicals from biomass and the derivation of monomers and polymers from biomass. It also details the processing and applications of biomass-derived polymers to enable materials scientists and engineers realize the potential of biomass as a sustainable source of polymers, including plastics and elastomers. The book is a one-stop-shop reference—giving students a basic understanding of the technology and how the material can be applied to industrial processes they will face in the workforce, and giving materials engineers and product designers the information they need to make more informed material selection decisions. Provides fundamental understanding of an increasingly important approach to sourcing polymeric materials Includes actionable, relevant information to enable materials engineers and product designers consider biomass-derived polymers in the products they are developing Discusses the environmental impact of biomass conversion to help readers improve the sustainability of their operations Compares petrochemical-derived polymers with bio-based polymers



Biopolymer Grafting Synthesis and Properties

Biopolymer Grafting  Synthesis and Properties Author Vijay Kumar Thakur
ISBN-10 9780128104613
Release 2017-09-27
Pages 594
Download Link Click Here

Biopolymer Grafting: Synthesis and Properties presents the latest research and developments in fundamental of synthesis and properties of biopolymer-based graft copolymers. The book presents a broad overview of the biopolymer grafting process, along with trends in the field. It also introduces a range of grafting methods which lead to materials with enhanced properties for a range of practical applications, along with the positives and limitations of these techniques. The book bridges the knowledge gap between the scientific principles and industrial applications of polymer grafting. This book covers synthesis and characterization of graft-copolymers of plant polysaccharides, functional separation membranes from grafted biopolymers, and polysaccharides in alternative methods for insulin delivery. Recent trends and advances in this area are discussed, assisting materials scientists and researchers in mapping out the future of these new "green" materials through value addition to enhance their use. Introduces polymer researchers to a promising, rapidly developing method for modifying naturally derived biopolymers Provides a one-stop shop covering synthesis, properties, characterization and graft copolymerization of bio-based polymeric materials Increases familiarity with a range of biopolymer grafting processes, enabling materials scientists and engineers to improve material properties and widen the range of potential biopolymer applications



Biodegradable Polymer Blends and Composites from Renewable Resources

Biodegradable Polymer Blends and Composites from Renewable Resources Author Long Yu
ISBN-10 9780470391556
Release 2009-03-25
Pages 400
Download Link Click Here

Biodegradable Polymer Blends and Composites from Renewable Resources provides a comprehensive, current overview of biopolymeric blends and composites and their applications in various industries. The book is organized according to the type of blend or composite. For each topic, the relationship between the structure of the blends/composites and their respective properties is explored, with particular focus on interface, compatibility, mechanical, and thermal properties. Real-life applications and potential markets are discussed. This is a premier reference for graduate students and researchers in polymer science, chemical and bio engineering, and materials science.



Advances in Physicochemical Properties of Biopolymers Part 1

Advances in Physicochemical Properties of Biopolymers  Part 1 Author Martin Masuelli
ISBN-10 9781681084534
Release 2017-07-05
Pages 545
Download Link Click Here

The last two decades have seen a number of significant advances in the methodology for evaluating the molecular weight distributions of polydispersed macromolecular systems in solution at the molecular level. This reference presents reviews on the progress in different analytical and characterization methods of biopolymers. Readers will find useful information about combinations of complex biopolymer analysis such as chromatographic or membrane based fractionation procedures combined with multiple detectors on line (multi-angle laser light scattering or MALLS). Key topics include: • refractive index, UV-Vis absorbance and intrinsic viscosity detection systems, • advances in SEC-MALLS (size exclusion chromatography coupled to multi-angle laser light scattering) and FFF-MALLS (field flow fractionation coupled on line to MALLS), • HPSEC-A4F-MALLS, matrix-assisted laser-desorption ionization (MALDI) • electrospray ionization (ESI) mass spectrometry • nuclear magnetic resonance (NMR) spectroscopy This reference is intended for students of applied chemistry and biochemistry who require information about biopolymer analysis and characterization.



Algae Based Polymers Blends and Composites

Algae Based Polymers  Blends  and Composites Author Khalid Mahmood Zia
ISBN-10 9780128123614
Release 2017-06-19
Pages 738
Download Link Click Here

Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Material Sciences offers considerable detail on the origin of algae, extraction of useful metabolites and major compounds from algal bio-mass, and the production and future prospects of sustainable polymers derived from algae, blends of algae, and algae based composites. Characterization methods and processing techniques for algae-based polymers and composites are discussed in detail, enabling researchers to apply the latest techniques to their own work. The conversion of bio-mass into high value chemicals, energy, and materials has ample financial and ecological importance, particularly in the era of declining petroleum reserves and global warming. Algae are an important source of biomass since they flourish rapidly and can be cultivated almost everywhere. At present the majority of naturally produced algal biomass is an unused resource and normally is left to decompose. Similarly, the use of this enormous underexploited biomass is mainly limited to food consumption and as bio-fertilizer. However, there is an opportunity here for materials scientists to explore its potential as a feedstock for the production of sustainable materials. Provides detailed information on the extraction of useful compounds from algal biomass Highlights the development of a range of polymers, blends, and composites Includes coverage of characterization and processing techniques, enabling research scientists and engineers to apply the information to their own research and development Discusses potential applications and future prospects of algae-based biopolymers, giving the latest insight into the future of these sustainable materials



Sustainable Composite Materials from Renewable Resources for Automotive Applications

Sustainable Composite Materials from Renewable Resources for Automotive Applications Author Arief Cahyo Wibowo
ISBN-10 MSU:31293027362189
Release 2004
Pages 278
Download Link Click Here

Sustainable Composite Materials from Renewable Resources for Automotive Applications has been writing in one form or another for most of life. You can find so many inspiration from Sustainable Composite Materials from Renewable Resources for Automotive Applications also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Sustainable Composite Materials from Renewable Resources for Automotive Applications book for free.



Cellulose Fibers Bio and Nano Polymer Composites

Cellulose Fibers  Bio  and Nano Polymer Composites Author Susheel Kalia
ISBN-10 3642173705
Release 2011-04-11
Pages 737
Download Link Click Here

Because we are living in an era of Green Science and Technology, developments in the field of bio- and nano- polymer composite materials for advanced structural and medical applications is a rapidly emerging area and the subject of scientific attention. In light of the continuously deteriorating environmental conditions, researchers all over the world have focused an enormous amount of scientific research towards bio-based materials because of their cost effectiveness, eco-friendliness and renewability. This handbook deals with cellulose fibers and nano-fibers and covers the latest advances in bio- and nano- polymer composite materials. This rapidly expanding field is generating many exciting new materials with novel properties and promises to yield advanced applications in diverse fields. This book reviews vital issues and topics and will be of interest to academicians, research scholars, polymer engineers and researchers in industries working in the subject area. It will also be a valuable resource for undergraduate and postgraduate students at institutes of plastic engineering and other technical institutes.



Bioprocessing for Value Added Products from Renewable Resources

Bioprocessing for Value Added Products from Renewable Resources Author Shang-Tian Yang
ISBN-10 0080466710
Release 2011-08-11
Pages 684
Download Link Click Here

Bioprocessing for Value-Added Products from Renewable Resources provides a timely review of new and unconventional techniques for manufacturing high-value products based on simple biological material. The book discusses the principles underpinning modern industrial biotechnology and describes a unique collection of novel bioprocesses for a sustainable future. This book begins in a very structured way. It first looks at the modern technologies that form the basis for creating a bio-based industry before describing the various organisms that are suitable for bioprocessing - from bacteria to algae - as well as their unique characteristics. This is followed by a discussion of novel, experimental bioprocesses, such as the production of medicinal chemicals, the production of chiral compounds and the design of biofuel cells. The book concludes with examples where biological, renewable resources become an important feedstock for large-scale industrial production. This book is suitable for researchers, practitioners, students, and consultants in the bioprocess and biotechnology fields, and for others who are interested in biotechnology, engineering, industrial microbiology and chemical engineering. ·Reviews the principles underpinning modern industrial biotechnology ·Provides a unique collection of novel bioprocesses for a sustainable future ·Gives examples of economical use of renewable resources as feedstocks ·Suitable for both non-experts and experts in the bioproduct industry



Polymer and Biopolymer Brushes

Polymer and Biopolymer Brushes Author Omar Azzaroni
ISBN-10 9781119455011
Release 2018-01-11
Pages 864
Download Link Click Here

Serves as a guide for seasoned researchers and students alike, who wish to learn about the cross-fertilization between biology and materials that is driving this emerging area of science This book covers the most relevant topics in basic research and those having potential technological applications for the field of biopolymer brushes. This area has experienced remarkable increase in development of practical applications in nanotechnology and biotechnology over the past decade. In view of the rapidly growing activity and interest in the field, this book covers the introductory features of polymer brushes and presents a unifying and stimulating overview of the theoretical aspects and emerging applications. It immerses readers in the historical perspective and the frontiers of research where our knowledge is increasing steadily—providing them with a feeling of the enormous potential, the multiple applications, and the many up-and-coming trends behind the development of macromolecular interfaces based on the use of polymer brushes. Polymer and Biopolymer Brushes: Fundamentals and Applications in Materials offers chapters on: Functionalization of Surfaces Using Polymer Brushes; Polymer Brushes by ATRP and Surface-Mediated RAFT Polymerization for Biological Functions; Electro-Induced Copper Catalyzed Surface Modification with Monolayer and Polymer Brush; Polymer Brushes on Flat and Curved Substrates; Biomimetic Anchors for Antifouling Polymer Brush Coating; Glycopolymer Brushes Presenting Sugars in Their Natural Form; Smart Surfaces Modified with Phenylboronic Acid-Containing Polymer Brushes; DNA Brushes; Polymer Brushes as Interfacial Materials for Soft Metal Conductors and Electronics; and more. Presents a comprehensive theory/simulation section that will be valuable for all readers Includes chapters not only on the biological applications of polymer brushes but also on biological systems that resemble polymer brushes on flat surfaces Addresses applications in coatings, friction, sensors, microelectromechanical systems, and biomaterials Devotes particular attention to the functional aspects of hybrid nanomaterials employing polymer brushes as functional units Polymer and Biopolymer Brushes: Fundamentals and Applications in Materials is aimed at both graduate students and researchers new to this subject as well as scientists already engaged in the study and development of polymer brushes.



Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements

Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements Author Debora Puglia
ISBN-10 9780323417396
Release 2016-07-11
Pages 408
Download Link Click Here

Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements introduces the innovative applications of polymeric materials based on nanocellulose, and covers extraction methods, functionalization approaches, and assembly methods to enable these applications. The book presents the state-of-the-art of this novel nano-filler and how it enables new applications in many different sectors, beyond existing products. With a focus on application of nano-cellulose based polymers with multifunctional activity, the book explains the methodology of nano-cellulose extraction and production and shows the potential performance benefits of these particular nanostructured polymers, for applications across different sectors, including food active packaging, energy-photovoltaics, biomedical, and filtration. The book describes how the different methodologies, functionalization, and organization at the nano-scale level could contribute to the design of required properties at macro level. The book studies the interactions between the main nano-filler with other active systems and how this interaction enables multi-functionality in the produced materials. The book is an indispensable resource for the growing number of scientists and engineers interested in the preparation and novel applications of nano-cellulose, and for industrial scientists active in formulation and fabrication of polymer products based on renewable resources. Provides insight into nanostructure formation science, and processing of polymeric materials and their characterization Offers a strong analysis of real industry needs for designing the materials Provides a well-balanced structure, including a light introduction of basic knowledge on extraction methods, functionalization approaches, and assembling focused to applications Describes how different methodologies, functionalization, and organization at the nano-scale level could contribute to the design of required properties at macro level



Feedstocks for the Future

Feedstocks for the Future Author Joseph J. Bozell
ISBN-10 0841239347
Release 2006-01
Pages 378
Download Link Click Here

Today's petrochemical industry is an amazing model of production efficiency, taking crude oil and supplying thousands of discrete chemicals and materials from just seven primary building blocks. Renewable raw materials offer a new set of primary building blocks including carbohydrates in the form of cellulose, starch, homicellulose, and monomeric sugars, aromatics in the form of lignin, hydrocarbons in the form of fatty acids and polyols in the form of glycerol. Yet chemical production today is overwhelmingly dominated by crude oil, principally because conversion technology for renewables still lags far behind that available for nonrenewables. Technology is needed that will lead to renewables based chemical processes that rival or exceed the diversity and efficiency of today's chemical industry. The cellulose and Renewable Materials division (CELL) of American Chemical Society offered a forum for this topic Feedstocks for the Future: Renewables for the production of Chemical and Materials, at the national ACS meeting in Anaheim, CA, March 28-April 1, 2004. This symposium included discussions of emerging conversion technologies for renewable building blocks, new mechanistic understanding of these conversion processes, development of new catalytic processes tailored for renewables, life cycle and process analysis for renewables, and identification of new structures that could serve as platforms for renewables-based product families. The book is intended to have a strong emphasis on organic chemistry, mechanism, and structure, and novel synthesis and production of chemicals, polymers and materials. More specifically, the reader will find information in the following areas: 1) new transformations of carbohydrates to chemicals and polymers 2) novel oleochemical processes; new uses of glycerol and fatty acids 3) transition metal catalyzed transformations of carbohydrates, lignin, fatty acids, glycerol, etc. 4) economic, environmental, and life cycle analysis of chemicals derived from renewables 5) production of new polymeric materials from renewables 6) new biocatalytic transformations of renewable building blocks 7) industrial uses of renewables and renewables based building blocks