Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Bioseparations Science and Engineering

Bioseparations Science and Engineering Author Roger G. Harrison
ISBN-10 9780195391817
Release 2015
Pages 547
Download Link Click Here

Preceded by: Bioseparations science and engineering / Roger G. Harrison ... [et al.]. c2003.



Bioseparations engineering

Bioseparations engineering Author Michael R. Ladisch
ISBN-10 UOM:39015049740486
Release 2001
Pages 735
Download Link Click Here

Multidisciplinary resource for graduate studies and the biotechnology industry Knowledge of the genetic basis of biological functioning continues to grow at an astronomical rate, as do the challenges and opportunities of applying this information to the production of therapeutic compounds, specialty biochemicals, functional food ingredients, environmentally friendly biocatalysts, and new bioproducts from renewable resources. While genetic engineering of living organisms transforms the science of genomics into treatments for cancer, diabetes, and heart disease, or products for industry and agriculture, the science and technology of bioseparations are the keys to delivering these products in a purified form suitable for use by people. The methods, theory, and materials that reduce the science of bioseparations to practice, whether in the laboratory or the plant, are the subjects of Bioseparations Engineering. Examples address purification of biomolecules ranging from recombinant proteins to gene therapy products, with footnotes detailing economics of the products. Mechanistic analysis and engineering design methods are given for: * Isocratic and gradient chromatography * Sedimentation, centrifugation, and filtration * Membrane systems * Precipitation and crystallization Topics addressed within this framework are: stationary phase selection; separations development; modeling of ion exchange, size exclusion, reversed phase, hydrophobic interaction, and affinity chromatography; the impact of regulatory issues on chromatography process design; organization of separation strategies into logical sequences of purification steps; and bridges between molecular biology, combinatorial methods, and separations science. A result of teaching and developing the subject matter over ten years, Bioseparations Engineering is an ideal text for graduate students, as well as a timely desk book for process engineers, process scientists, researchers, and research associates in the pharmaceutical, food, and life sciences industries.



Bioreaction Engineering Principles

Bioreaction Engineering Principles Author Jens Nielsen
ISBN-10 9781461507673
Release 2012-12-06
Pages 528
Download Link Click Here

This is the second edition of the text "Bioreaction Engineering Principles" by Jens Nielsen and John Villadsen, originally published in 1994 by Plenum Press (now part of Kluwer). Time runs fast in Biotechnology, and when Kluwer Plenum stopped reprinting the first edition and asked us to make a second, revised edition we happily accepted. A text on bioreactions written in the early 1990's will not reflect the enormous development of experimental as well as theoretical aspects of cellular reactions during the past decade. In the preface to the first edition we admitted to be newcomers in the field. One of us (JV) has had 10 more years of job training in biotechnology, and the younger author (IN) has now received international recognition for his work with the hottest topics of "modem" biotechnology. Furthermore we are happy to have induced Gunnar Liden, professor of chemical reaction engineering at our sister university in Lund, Sweden to join us as co-author of the second edition. His contribution, especially on the chemical engineering aspects of "real" bioreactors has been of the greatest value. Chapter 8 of the present edition is largely unchanged from the first edition. We wish to thank professor Martin Hjortso from LSU for his substantial help with this chapter.



Bioprocess engineering

Bioprocess engineering Author Bjorn K. Lydersen
ISBN-10 UOM:39015032487137
Release 1994
Pages 805
Download Link Click Here

Divided into four sections, the first and third reflect the fact that there are two types of equipment required in the plant--one in which the actual product is synthesized or processed such as the fermentor, centrifuge and chromatographic columns; and the other that supplies support for the facility or process including air conditioning, water and waste systems. Part two describes such components as pumps, filters and valves not limited to a certain type of equipment. Lastly, it covers planning and designing the entire facility along with requirements for containment and validation of the process.



Organic Synthesis Engineering

Organic Synthesis Engineering Author L. K. Doraiswamy
ISBN-10 0198025696
Release 2001-02-15
Pages 936
Download Link Click Here

This book will formally launch "organic synthesis engineering" as a distinctive field in the armory of the reaction engineer. Its main theme revolves around two developments: catalysis and the role of process intensification in enhancing overall productivity. Each of these two subjects are becoming increasingly useful in organic synthesis engineering, especially in the production of medium and small volume chemicals and enhancing reaction rates by extending laboratory techniques, such as ultrasound, phase transfer catalysts, membrane reactor, and microwaves, to industrial scale production. This volume describes the applications of catalysis in organic synthesis and outlines different techniques of reaction rate and/or selectivity enhancement against a background of reaction engineering principles for both homogeneous and heterogeneous systems.



Biochemical Engineering and Biotechnology

Biochemical Engineering and Biotechnology Author Ghasem Najafpour
ISBN-10 9780444633774
Release 2015-02-24
Pages 668
Download Link Click Here

Biochemical Engineering and Biotechnology, 2nd Edition, outlines the principles of biochemical processes and explains their use in the manufacturing of every day products. The author uses a diirect approach that should be very useful for students in following the concepts and practical applications. This book is unique in having many solved problems, case studies, examples and demonstrations of detailed experiments, with simple design equations and required calculations. Covers major concepts of biochemical engineering and biotechnology, including applications in bioprocesses, fermentation technologies, enzymatic processes, and membrane separations, amongst others Accessible to chemical engineering students who need to both learn, and apply, biological knowledge in engineering principals Includes solved problems, examples, and demonstrations of detailed experiments with simple design equations and all required calculations Offers many graphs that present actual experimental data, figures, and tables, along with explanations



Chemical Engineering

Chemical Engineering Author Miguel A. Galan
ISBN-10 9780470024997
Release 2005-10-31
Pages 400
Download Link Click Here

Unlike extensive major reference works or handbooks, Chemical Engineering: Trends and Developments provides readers with a ready-reference to latest techniques in selected areas of chemical engineering where research is and will be focused in the future. These areas are: bioseparations; particle science and design; nanotechnology; and reaction engineering. The aim of the book is to provide academic and R&D researchers with an overview of the main areas of technical development and how these techniques can be applied. Each chapter focuses on a technique, plus a selection of applications or examples of where the technique could be applied.



Engineering Principles in Biotechnology

Engineering Principles in Biotechnology Author Wei-Shou Hu
ISBN-10 9781119159025
Release 2017-11-13
Pages 504
Download Link Click Here

This book is a short introduction to the engineering principles of harnessing the vast potential of microorganisms, and animal and plant cells in making biochemical products. It was written for scientists who have no background in engineering, and for engineers with minimal background in biology. The overall subject dealt with is process, but the coverage goes beyond the process of biomanufacturing in the bioreactor, and extends to the factory of cell's biosynthetic machinery. Starting with an overview of biotechnology and organism, engineers are eased into biochemical reactions and life scientists are exposed to the technology of production using cells. Subsequent chapters allow engineers to be acquainted with biochemical pathways, while life scientist learn about stoichiometric and kinetic principles of reactions and cell growth. This leads to the coverage of reactors, oxygen transfer and scale up. Following three chapters on biomanufacturing of current and future importance, i.e. cell culture, stem cells and synthetic biology, the topic switches to product purification, first with a conceptual coverage of operations used in bioseparation, and then a more detailed analysis to provide a conceptual understanding of chromatography, the modern workhorse of bioseparation. Drawing on principles from engineering and life sciences, this book is for practitioners in biotechnology and bioengineering. The author has used the material within this book for a course for advanced students in both engineering and life sciences. To this end, problems are provided at the end of each chapter.



Engineering Principles in Biotechnology

Engineering Principles in Biotechnology Author Wei-Shou Hu
ISBN-10 9781119159032
Release 2017-09-11
Pages 504
Download Link Click Here

This book is a short introduction to the engineering principles of harnessing the vast potential of microorganisms, and animal and plant cells in making biochemical products. It was written for scientists who have no background in engineering, and for engineers with minimal background in biology. The overall subject dealt with is process. But the coverage goes beyond the process of biomanufacturing in the bioreactor, and extends to the factory of cell’s biosynthetic machinery. Starting with an overview of biotechnology and organism, engineers are eased into biochemical reactions and life scientists are exposed to the technology of production using cells. Subsequent chapters allow engineers to be acquainted with biochemical pathways, while life scientist learn about stoichiometric and kinetic principles of reactions and cell growth. This leads to the coverage of reactors, oxygen transfer and scale up. Following three chapters on biomanufacturing of current and future importance, i.e. cell culture, stem cells and synthetic biology, the topic switches to product purification, first with a conceptual coverage of operations used in bioseparation, and then a more detailed analysis to provide a conceptual understanding of chromatography, the modern workhorse of bioseparation. Drawing on principles from engineering and life sciences, this book is for practitioners in biotechnology and bioengineering. The author has used the book for a course for advanced students in both engineering and life sciences. To this end, problems are provided at the end of each chapter.



Mathematical Methods in Chemical Engineering

Mathematical Methods in Chemical Engineering Author Arvind Varma
ISBN-10 0195098218
Release 1997
Pages 690
Download Link Click Here

Mathematical Methods in Chemical Engineering builds on students' knowledge of calculus, linear algebra, and differential equations, employing appropriate examples and applications from chemical engineering to illustrate the techniques. It provides an integrated treatment of linear operator theory from determinants through partial differential equations, featuring an extensive chapter on nonlinear ordinary differential equations as well as strong coverage of first-order partial differential equations and perturbation methods. Numerous high-quality diagrams and graphics support the concepts and solutions. Many examples are included throughout the text, and a large number of well-conceived problems at the end of each chapter reinforce the concepts presented. Also, in some cases the results of the mathematical analysis are compared with experimental data--a unique feature for a mathematical book. The text offers instructors the flexibility to cover all of the material presented or to select a few methods to teach, so that they may cultivate the specific mathematical skills which are most appropriate for their students. The topical coverage provides a good balance between material which can be taught in a one-year course and the techniques that chemical engineers need to know to effectively model, analyze, and carry out numerical simulations of chemical engineering processes, with an emphasis on developing techniques which can be used in applications. Mathematical Methods in Chemical Engineering serves as both an ideal text for chemical engineering students in advanced mathematical methods courses and a comprehensive reference in mathematical methods for chemical engineering practitioners in academic institutions and industry.



Optical Rheometry of Complex Fluids

Optical Rheometry of Complex Fluids Author Gerald G. Fuller
ISBN-10 0195357078
Release 1995-06-29
Pages 288
Download Link Click Here

This book provides a self-contained presentation of optical methods used to measure the structure and dynamics of complex fluids subject to the influence of external fields. Such fields--hydrodynamic, electric, and magnetic--are commonly encountered in both academic and industrial research, and can produce profound changes in the microscale properties of liquids comprised of polymers, colloids, liquid crystals, or surfactants. Starting with the basic Maxwell field equations, this book discusses the polarization properties of light, including Jones and Mueller calculus, and then covers the transmission, reflection, and scattering of light in anisotropic materials. Spectroscopic interactions with oriented systems such as absorptive dichroism, small wide angle light scattering, and Raman scattering are discussed. Applications of these methods to a wide range of problems in complex fluid dynamics and structure are presented, along with selected case studies chosen to elucidate the range of techniques and materials that can be studied. As the only book of its kind to present a self-contained description of optical methods used for the full range of complex fluids, this work will be special interest to a wide range of readers, including chemical engineers, physical chemists, physicists, polymer and colloid scientists, along with graduate and post-graduate researchers.



Principles of Bioseparations Engineering

Principles of Bioseparations Engineering Author Raja Ghosh
ISBN-10 9789813106765
Release 2006-10-23
Pages 284
Download Link Click Here

Bioseparations engineering deals with the scientific and engineering principles involved in large-scale separation and purification of biological products. It is a key component of most chemical engineering/biotechnology/bioprocess engineering programmes. This book discusses the underlying principles of bioseparations engineering written from the perspective of an undergraduate course. It covers membrane based bioseparations in much more detail than some of the other books on bioseparations engineering. Based largely on the lecture notes the author developed to teach the course, this book is especially suitable for use as an undergraduate level textbook, as most other textbooks are targeted at graduate students.



Separation of Molecules Macromolecules and Particles

Separation of Molecules  Macromolecules and Particles Author Kamalesh Sirkar
ISBN-10 9780521895736
Release 2014-01-16
Pages 909
Download Link Click Here

A modern separation process textbook written for advanced undergraduate and graduate level courses in chemical engineering.



From Multiscale Modeling to Meso Science

From Multiscale Modeling to Meso Science Author Jinghai Li
ISBN-10 9783642351891
Release 2013-03-22
Pages 484
Download Link Click Here

Multiscale modeling is becoming essential for accurate, rapid simulation in science and engineering. This book presents the results of three decades of research on multiscale modeling in process engineering from principles to application, and its generalization for different fields. This book considers the universality of meso-scale phenomena for the first time, and provides insight into the emerging discipline that unifies them, meso-science, as well as new perspectives for virtual process engineering. Multiscale modeling is applied in areas including: multiphase flow and fluid dynamics chemical, biochemical and process engineering mineral processing and metallurgical engineering energy and resources materials science and engineering Jinghai Li is Vice-President of the Chinese Academy of Sciences (CAS), a professor at the Institute of Process Engineering, CAS, and leader of the EMMS (Energy-minimizing multiscale) Group. Wei Ge, Wei Wang, Ning Yang and Junwu Wang are professors at the EMMS Group, part of the Institute of Process Engineering, CAS. Xinhua Liu, Limin Wang, Xianfeng He and Xiaowei Wang are associate professors at the EMMS Group, part of the Institute of Process Engineering, CAS. Mooson Kwauk is an emeritus director of the Institute of Process Engineering, CAS, and is an advisor to the EMMS Group.



Centrifugal Separations in Biotechnology

Centrifugal Separations in Biotechnology Author Wallace Woon-Fong Leung
ISBN-10 9780080549729
Release 2007-08-16
Pages 312
Download Link Click Here

This book is the first devoted to centrifugal separation in biotechnology. It is of value to professionals in the chemical, bioprocess, and biotech sectors, and all those concerned with bioseparation, bioprocessing, unit-operations and process engineering. Key topics covered include a full introduction to centrifugation, sedimentation and separation; detailed coverage of centrifuge types, including batch and semi-batch centrifuges, disk-stack and tubular decanter centrifuges; methods for increasing solids concentration; laboratory and pilot testing of centrifuges; selection and sizing centrifuges; scale-up of equipment, performance prediction and analysis of test results using numerical simulation. A comprehensive guide to centrifuges, their optimal development and operation in the biotechnology industry Applications for the separation of proteins, DNA, mitochondria, ribosomes, lysosomes and other cellular elements Provides detailed process information and data to assist in the development of particular processes from existing systems Explores the commercial applications of centrifuges in biotechnology Guidance on troubleshooting and optimizing centrifuges



Microspheres and Microcapsules in Biotechnology

Microspheres and Microcapsules in Biotechnology Author Guanghui Ma
ISBN-10 9789814316477
Release 2013-01-29
Pages 552
Download Link Click Here

Microspheres and microcapsules have very broad applications in various fields, especially in those of biotechnology and biopharmaceuticals, as targeting drug–delivery carriers, separation media for protein, peptide, DNA, and so forth. It is a big challenge to design and prepare microspheres and microcapsules of different sizes and structures from various materials and develop new techniques. This book focuses on new microspheres and microcapsules specifically designed and prepared for application in the fields of biotechnology and biopharmaceuticals involving bioreaction, bioseparation, bioformulation, biodetection, and other new bioapplications. It provides a deep knowledge about the principles of design, preparation methods, and application results of new microspheres and microcapsules for each bioapplication area. The book also presents problems that need to be studied further and comments on the future prospects of microspheres and microcapsules.



Analysis of Transport Phenomena

Analysis of Transport Phenomena Author William Murray Deen
ISBN-10 0199740283
Release 2012
Pages 664
Download Link Click Here

Analysis of Transport Phenomena, Second Edition, provides a unified treatment of momentum, heat, and mass transfer, emphasizing the concepts and analytical techniques that apply to these transport processes. The second edition has been revised to reinforce the progression from simple to complex topics and to better introduce the applied mathematics that is needed both to understand classical results and to model novel systems. A common set of formulation, simplification, and solution methods is applied first to heat or mass transfer in stationary media and then to fluid mechanics, convective heat or mass transfer, and systems involving various kinds of coupled fluxes. FEATURES: * Explains classical methods and results, preparing students for engineering practice and more advanced study or research * Covers everything from heat and mass transfer in stationary media to fluid mechanics, free convection, and turbulence * Improved organization, including the establishment of a more integrative approach * Emphasizes concepts and analytical techniques that apply to all transport processes * Mathematical techniques are introduced more gradually to provide students with a better foundation for more complicated topics discussed in later chapters