Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Bonds and Bands in Semiconductors

Bonds and Bands in Semiconductors Author J Phillips
ISBN-10 9780323156974
Release 2012-12-02
Pages 300
Download Link Click Here

Bonds and Bands in Semiconductors deals with bonds and bands in semiconductors and covers a wide range of topics, from crystal structures and covalent and ionic bonds to elastic and piezoelectric constants. Lattice vibrations, energy bands, and the thermochemistry of semiconductors are also discussed, along with impurities and fundamental optical spectra. Comprised of 10 chapters, this book begins with an overview of the crystal structures of the more common and more useful semiconductors, together with bonding definitions and rules; bond energy gaps and band energy gaps; tetrahedral coordination; and bond lengths and radii. The discussion then turns to the effects of covalent and ionic bonds on crystal structures and cohesive energies of semiconductors, paying particular attention to the electronic configurations of atoms, ionicity, and homopolar energy gaps. Subsequent chapters introduce the reader to elastic and piezoelectric constants as well as lattice vibrations, energy bands, impurities, and fundamental optical spectra. The book also examines the thermochemistry of semiconductors before concluding with a concise qualitative description of barriers, junctions, and devices, with emphasis on the physical and chemical principles behind their operation. This monograph will be of interest to physicists, chemists, and materials scientists.

The Materials Science of Semiconductors

The Materials Science of Semiconductors Author Angus Rockett
ISBN-10 9780387686509
Release 2007-11-20
Pages 622
Download Link Click Here

This book describes semiconductors from a materials science perspective rather than from condensed matter physics or electrical engineering viewpoints. It includes discussion of current approaches to organic materials for electronic devices. It further describes the fundamental aspects of thin film nucleation and growth, and the most common physical and chemical vapor deposition techniques. Examples of the application of the concepts in each chapter to specific problems or situations are included, along with recommended readings and homework problems.

Chemical Bonding at Surfaces and Interfaces

Chemical Bonding at Surfaces and Interfaces Author Anders Nilsson
ISBN-10 0080551912
Release 2011-08-11
Pages 532
Download Link Click Here

Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces

Topics in Growth and Device Processing of III V Semiconductors

Topics in Growth and Device Processing of III V Semiconductors Author S. J. Pearton
ISBN-10 9810218842
Release 1996
Pages 546
Download Link Click Here

This book describes advanced epitaxial growth and self-aligned processing techniques for the fabrication of III-V semiconductor devices such as heterojunction bipolar transistors and high electron mobility transistors. It is the first book to describe the use of carbon-doping and low damage dry etching techniques that have proved indispensable in making reliable, high performance devices. These devices are used in many applications such as cordless telephones and high speed lightwave communication systems.

Semiconductor Materials

Semiconductor Materials Author Lev I. Berger
ISBN-10 0849389127
Release 1996-12-13
Pages 496
Download Link Click Here

Semiconductor Materials presents physico-chemical, electronic, electrical, elastic, mechanical, magnetic, optical, and other properties of a vast group of elemental, binary, and ternary inorganic semiconductors and their solid solutions. It also discusses the properties of organic semiconductors. Descriptions are given of the most commonly used semiconductor devices-charge-coupled devices, field-effect transistors, unijunction transistors, thyristors, Zener and avalanche diodes, and photodiodes and lasers. The current trend of transitioning from silicon technology to gallium arsenide technology in field-effect-based electronic devices is a special feature that is also covered. More than 300 figures and 100 tables highlight discussions in the text, and more than 2,000 references guide you to further sources on specific topics. Semiconductor Materials is a relatively compact book containing vast information on semiconductor material properties. Readers can compare results of the property measurements that have been reported by different authors and critically compare the data using the reference information contained in the book. Engineers who design and improve semiconductor devices, researchers in physics and chemistry, and students of materials science and electronics will find this a valuable guide.

Fundamentals of Semiconductors

Fundamentals of Semiconductors Author Peter YU
ISBN-10 3642007104
Release 2010-04-07
Pages 778
Download Link Click Here

Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.

Subject Guide to Books in Print

Subject Guide to Books in Print Author
ISBN-10 UOM:39015016312806
Release 1992
Download Link Click Here

Subject Guide to Books in Print has been writing in one form or another for most of life. You can find so many inspiration from Subject Guide to Books in Print also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Subject Guide to Books in Print book for free.

Silicon Carbide Biotechnology

Silicon Carbide Biotechnology Author Stephen Saddow
ISBN-10 9780128030059
Release 2016-03-07
Pages 378
Download Link Click Here

Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, Second Edition, provides the latest information on this wide-band-gap semiconductor material that the body does not reject as a foreign (i.e., not organic) material and its potential to further advance biomedical applications. SiC devices offer high power densities and low energy losses, enabling lighter, more compact, and higher efficiency products for biocompatible and long-term in vivo applications, including heart stent coatings, bone implant scaffolds, neurological implants and sensors, glucose sensors, brain-machine-interface devices, smart bone implants, and organ implants. This book provides the materials and biomedical engineering communities with a seminal reference book on SiC for developing technology, and is a resource for practitioners eager to identify and implement advanced engineering solutions to their everyday medical problems for which they currently lack long-term, cost-effective solutions. Discusses the properties, processing, characterization, and application of silicon carbide biomedical materials and related technology Assesses literature, patents, and FDA approvals for clinical trials, enabling rapid assimilation of data from current disparate sources and promoting the transition from technology R&D, to clinical trials Includes more on applications and devices, such as SiC nanowires, biofunctionalized devices, micro-electrode arrays, heart stent/cardiovascular coatings, and continuous glucose sensors, in this new edition

Science and Engineering of Materials SI Edition

Science and Engineering of Materials  SI Edition Author Donald R. Askeland
ISBN-10 9781305446335
Release 2015-01-12
Pages 960
Download Link Click Here

Succeed in your materials science course with THE SCIENCE AND ENGINEERING OF MATERIALS, 7e. Filled with built-in study tools to help you master key concepts, this proven book will help you develop an understanding of the relationship between structure, processing, and properties of materials and will serve as a useful reference for future courses in manufacturing, materials, design, or materials selection. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.


ISBN-10 9788120353015
Release 2017-01-01
Pages 572
Download Link Click Here

Designed as a textbook for Materials Science course offered in undergraduate engineering programmes as well as in M.Sc. (Physics and Chemistry), the book exposes the fundamental knowledge of Crystal Structure, Crystal Defects and Bonding in Solids. The text deals with Introductory Quantum Physics, Electrical Properties of Materials, Band Theory of Solids, Semiconducting Materials and Dielectric Materials. Moreover, Properties of Superconducting Materials as well as Optical Properties of Materials and Magnetic Properties of Materials are emphasized in an explicit way. Also, well-organized presentation of topics, use of simple language, chapter-end solved problems, short and descriptive type questions together make the book effective in terms of building a solid foundation of the subject. SALIENT FEATURES • Detailed coverage of the uses of Optical Properties of Materials like CD, DVD, Blu-ray Disc and Holographic Data Storage. • Deep explanation of the synthesis and properties of Nanomaterials. • In-depth coverage of Display Devices. • Full coverage of advanced engineering materials like Shape Memory Alloys, Metallic Glasses, Non-linear Materials, and Biomaterials. • Thorough coverage of Nanoelectronics and Nanodevices. • In-depth detail of synthesis and properties of Carbon Nanotubes. • Wide coverage of characterization of materials like XRD, ESCA, SEM, TEM, STM, ESR and NMR.

Engineering Materials Science

Engineering Materials Science Author Milton Ohring
ISBN-10 0080505694
Release 1995-11-29
Pages 827
Download Link Click Here

Milton Ohring's Engineering Materials Science integrates the scientific nature and modern applications of all classes of engineering materials. This comprehensive, introductory textbook will provide undergraduate engineering students with the fundamental background needed to understand the science of structure-property relationships, as well as address the engineering concerns of materials selection in design, processing materials into useful products, andhow material degrade and fail in service. Specific topics include: physical and electronic structure; thermodynamics and kinetics; processing; mechanical, electrical, magnetic, and optical properties; degradation; and failure and reliability. The book offers superior coverage of electrical, optical, and magnetic materials than competing text. The author has taught introductory courses in material science and engineering both in academia and industry (AT&T Bell Laboratories) and has also written the well-received book, The Material Science of Thin Films (Academic Press). Key Features * Provides a modern treatment of materials exposing the interrelated themes of structure, properties, processing, and performance * Includes an interactive, computationally oriented, computer disk containing nine modules dealing with structure, phase diagrams, diffusion, and mechanical and electronic properties * Fundamentals are stressed * Of particular interest to students, researchers, and professionals in the field of electronic engineering

Materials Science of Thin Films

Materials Science of Thin Films Author Milton Ohring
ISBN-10 9780125249751
Release 2002
Pages 794
Download Link Click Here

This is the first book that can be considered a textbook on thin film science, complete with exercises at the end of each chapter. Ohring has contributed many highly regarded reference books to the AP list, including Reliability and Failure of Electronic Materials and the Engineering Science of Thin Films. The knowledge base is intended for science and engineering students in advanced undergraduate or first-year graduate level courses on thin films and scientists and engineers who are entering or require an overview of the field. Since 1992, when the book was first published, the field of thin films has expanded tremendously, especially with regard to technological applications. The second edition will bring the book up-to-date with regard to these advances. Most chapters have been greatly updated, and several new chapters have been added.


Semiconductors Author David K. Ferry
ISBN-10 0750310448
Release 2013
Pages 181
Download Link Click Here

As we settle into this second decade of the twenty-first century it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The growth of microelectronics itself has been driven, and in turn is calibrated by, the growth in density of transistors on a single integrated circuit, a growth that has come to be known as Moore's Law. Considering that the first transistor appeared only at the middle of the last century, it is remarkable that billions of transistors can now appear on a single chip. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors and prepares readers for further advanced study, research and development work in semiconductor materials and applications. The book describes how quantum mechanics gives semiconductors unique properties that enabled the microelectronics revolution, and sustain the ever-growing importance of this revolution. Including chapters on electronic structure, lattice dynamics, electron-phonon interactions and carrier transport in also discusses theoretical methods for computation of band structure, phonon spectra, the electron-phonon interaction and transport of carriers.


ISBN-10 9788120350922
Release 2015-05-01
Pages 488
Download Link Click Here

This well-established and widely adopted book, now in its Sixth Edition, provides a thorough analysis of the subject in an easy-to-read style. It analyzes, systematically and logically, the basic concepts and their applications to enable the students to comprehend the subject with ease. The book begins with a clear exposition of the background topics in chemical equilibrium, kinetics, atomic structure and chemical bonding. Then follows a detailed discussion on the structure of solids, crystal imperfections, phase diagrams, solid-state diffusion and phase transformations. This provides a deep insight into the structural control necessary for optimizing the various properties of materials. The mechanical properties covered include elastic, anelastic and viscoelastic behaviour, plastic deformation, creep and fracture phenomena. The next four chapters are devoted to a detailed description of electrical conduction, superconductivity, semiconductors, and magnetic and dielectric properties. The final chapter on ‘Nanomaterials’ is an important addition to the sixth edition. It describes the state-of-art developments in this new field. This eminently readable and student-friendly text not only provides a masterly analysis of all the relevant topics, but also makes them comprehensible to the students through the skillful use of well-drawn diagrams, illustrative tables, worked-out examples, and in many other ways. The book is primarily intended for undergraduate students of all branches of engineering (B.E./B.Tech.) and postgraduate students of Physics, Chemistry and Materials Science. KEY FEATURES • All relevant units and constants listed at the beginning of each chapter • A note on SI units and a full table of conversion factors at the beginning • A new chapter on ‘Nanomaterials’ describing the state-of-art information • Examples with solutions and problems with answers • About 350 multiple choice questions with answers

Functional Materials

Functional Materials Author S. Banerjee
ISBN-10 9780123851437
Release 2011-12-09
Pages 730
Download Link Click Here

Functional materials have assumed a very prominent position in several high-tech areas. Such materials are not being classified on the basis of their origin, nature of bonding or processing techniques but are classified on the basis of the functions they can perform. This is a significant departure from the earlier schemes in which materials were described as metals, alloys, ceramics, polymers, glass materials etc. Several new processing techniques have also evolved in the recent past. Because of the diversity of materials and their functions it has become extremely difficult to obtain information from single source. Functional Materials: Preparation, Processing and Applications provides a comprehensive review of the latest developments. Serves as a ready reference for Chemistry, Physics and Materials Science researchers by covering a wide range of functional materials in one book Aids in the design of new materials by emphasizing structure or microstructure – property correlation Covers the processing of functional materials in detail, which helps in conceptualizing the applications of them

Semiconductor Alloys

Semiconductor Alloys Author An-Ben Chen
ISBN-10 9781461303176
Release 2012-12-06
Pages 364
Download Link Click Here

In the first comprehensive treatment of these technologically important materials, the authors provide theories linking the properties of semiconductor alloys to their constituent compounds. Topics include crystal structures, bonding, elastic properties, phase diagrams, band structures, transport, ab-initio theories, and semi-empirical theories. Each chapter includes extensive tables and figures as well as problem sets.

Introduction to Materials Science for Engineers

Introduction to Materials Science for Engineers Author James F. Shackelford
ISBN-10 9780136012603
Release 2009
Pages 586
Download Link Click Here

"For a first course in Materials Sciences and Engineering taught in the departments of materials science, mechanical, civil and general engineering. This text provides balanced, current treatment of the full spectrum of engineering materials, covering all the physical properties, applications and relevant properties associated with engineering materials. It explores all of major categories of materials while also offering detailed examinations of a wide range of new materials with high-tech applications."--Publisher's website.