Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Brownian Motion

Brownian Motion Author Peter Mörters
ISBN-10 9781139486576
Release 2010-03-25
Download Link Click Here

This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.

Brownian Motion

Brownian Motion Author T. Hida
ISBN-10 9781461260301
Release 2012-12-06
Pages 327
Download Link Click Here

Following the publication of the Japanese edition of this book, several inter esting developments took place in the area. The author wanted to describe some of these, as well as to offer suggestions concerning future problems which he hoped would stimulate readers working in this field. For these reasons, Chapter 8 was added. Apart from the additional chapter and a few minor changes made by the author, this translation closely follows the text of the original Japanese edition. We would like to thank Professor J. L. Doob for his helpful comments on the English edition. T. Hida T. P. Speed v Preface The physical phenomenon described by Robert Brown was the complex and erratic motion of grains of pollen suspended in a liquid. In the many years which have passed since this description, Brownian motion has become an object of study in pure as well as applied mathematics. Even now many of its important properties are being discovered, and doubtless new and useful aspects remain to be discovered. We are getting a more and more intimate understanding of Brownian motion.

Stochastic Processes

Stochastic Processes Author Richard F. Bass
ISBN-10 9781139501477
Release 2011-10-06
Download Link Click Here

This comprehensive guide to stochastic processes gives a complete overview of the theory and addresses the most important applications. Pitched at a level accessible to beginning graduate students and researchers from applied disciplines, it is both a course book and a rich resource for individual readers. Subjects covered include Brownian motion, stochastic calculus, stochastic differential equations, Markov processes, weak convergence of processes and semigroup theory. Applications include the Black–Scholes formula for the pricing of derivatives in financial mathematics, the Kalman–Bucy filter used in the US space program and also theoretical applications to partial differential equations and analysis. Short, readable chapters aim for clarity rather than full generality. More than 350 exercises are included to help readers put their new-found knowledge to the test and to prepare them for tackling the research literature.

Handbook of Brownian Motion

Handbook of Brownian Motion Author Andrei N. Borodin
ISBN-10 3764367059
Release 2002-01-01
Pages 672
Download Link Click Here

There are two parts in this book. The first part is devoted mainly to the proper ties of linear diffusions in general and Brownian motion in particular. The second part consists of tables of distributions of functionals of Brownian motion and re lated processes. The primary aim of this book is to give an easy reference to a large number of facts and formulae associated to Brownian motion. We have tried to do this in a "handbook-style". By this we mean that results are given without proofs but are equipped with a reference where a proof or a derivation can be found. It is our belief and experience that such a material would be very much welcome by students and people working with applications of diffusions and Brownian motion. In discussions with many of our colleagues we have found that they share this point of view. Our original plan included more things than we were able to realize. It turned out very soon when trying to put the plan into practice that the material would be too wide to be published under one cover. Excursion theory, which most of the recent results concerning linear Brownian motion and diffusions can be classified as, is only touched upon slightly here, not to mention Brownian motion in several dimensions which enters only through the discussion of Bessel processes. On the other hand, much attention is given to the theory of local time.

Continuous Martingales and Brownian Motion

Continuous Martingales and Brownian Motion Author Daniel Revuz
ISBN-10 9783662064009
Release 2013-03-09
Pages 602
Download Link Click Here

"This is a magnificent book! Its purpose is to describe in considerable detail a variety of techniques used by probabilists in the investigation of problems concerning Brownian motion....This is THE book for a capable graduate student starting out on research in probability: the effect of working through it is as if the authors are sitting beside one, enthusiastically explaining the theory, presenting further developments as exercises." –BULLETIN OF THE L.M.S.

Brownian Motion

Brownian Motion Author Robert M. Mazo
ISBN-10 9780198515678
Release 2002
Pages 289
Download Link Click Here

This book describes the theory of how processes on the unobservable molecular scale give rise to observable effects such as diffusion and electrical noise on the macroscopic or laboratory scale. It puts the modern theory into historical context, and features new applications, statistical mechanics derivations, and the mathematical background of the topic.

Brownian Models of Performance and Control

Brownian Models of Performance and Control Author J. Michael Harrison
ISBN-10 9781107018396
Release 2013-12-02
Pages 216
Download Link Click Here

Direct and to the point, this book from one of the field's leaders covers Brownian motion and stochastic calculus at the graduate level, and illustrates the use of that theory in various application domains, emphasizing business and economics. The mathematical development is narrowly focused and briskly paced, with many concrete calculations and a minimum of abstract notation. The applications discussed include: the role of reflected Brownian motion as a storage model, queuing model, or inventory model; optimal stopping problems for Brownian motion, including the influential McDonald–Siegel investment model; optimal control of Brownian motion via barrier policies, including optimal control of Brownian storage systems; and Brownian models of dynamic inference, also called Brownian learning models or Brownian filtering models.

Brownian Motion

Brownian Motion Author René L. Schilling
ISBN-10 9783110307306
Release 2014-06-18
Pages 424
Download Link Click Here

Stochastic processes occur everywhere in sciences and engineering, and need to be understood by applied mathematicians, engineers and scientists alike. This is a first course introducing the reader gently to the subject. Brownian motions are a stochastic process, central to many applications and easy to treat.

Long Range Dependence and Self Similarity

Long Range Dependence and Self Similarity Author Vladas Pipiras
ISBN-10 9781107039469
Release 2017-04-18
Pages 382
Download Link Click Here

A modern and rigorous introduction to long-range dependence and self-similarity, complemented by numerous more specialized up-to-date topics in this research area.

Measures Integrals and Martingales

Measures  Integrals and Martingales Author René L. Schilling
ISBN-10 0521850150
Release 2005-11-10
Pages 381
Download Link Click Here

This book, first published in 2005, introduces measure and integration theory as it is needed in many parts of analysis and probability.

Probability and Stochastics

Probability and Stochastics Author Erhan Çınlar
ISBN-10 0387878599
Release 2011-02-21
Pages 558
Download Link Click Here

This text is an introduction to the modern theory and applications of probability and stochastics. The style and coverage is geared towards the theory of stochastic processes, but with some attention to the applications. In many instances the gist of the problem is introduced in practical, everyday language and then is made precise in mathematical form. The first four chapters are on probability theory: measure and integration, probability spaces, conditional expectations, and the classical limit theorems. There follows chapters on martingales, Poisson random measures, Levy Processes, Brownian motion, and Markov Processes. Special attention is paid to Poisson random measures and their roles in regulating the excursions of Brownian motion and the jumps of Levy and Markov processes. Each chapter has a large number of varied examples and exercises. The book is based on the author’s lecture notes in courses offered over the years at Princeton University. These courses attracted graduate students from engineering, economics, physics, computer sciences, and mathematics. Erhan Cinlar has received many awards for excellence in teaching, including the President’s Award for Distinguished Teaching at Princeton University. His research interests include theories of Markov processes, point processes, stochastic calculus, and stochastic flows. The book is full of insights and observations that only a lifetime researcher in probability can have, all told in a lucid yet precise style.

Gaussian Processes on Trees

Gaussian Processes on Trees Author Anton Bovier
ISBN-10 9781107160491
Release 2016-10-31
Pages 212
Download Link Click Here

Branching Brownian motion (BBM) is a classical object in probability theory with deep connections to partial differential equations. This book highlights the connection to classical extreme value theory and to the theory of mean-field spin glasses in statistical mechanics. Starting with a concise review of classical extreme value statistics and a basic introduction to mean-field spin glasses, the author then focuses on branching Brownian motion. Here, the classical results of Bramson on the asymptotics of solutions of the F-KPP equation are reviewed in detail and applied to the recent construction of the extremal process of BBM. The extension of these results to branching Brownian motion with variable speed are then explained. As a self-contained exposition that is accessible to graduate students with some background in probability theory, this book makes a good introduction for anyone interested in accessing this exciting field of mathematics.

Classical Potential Theory and Its Probabilistic Counterpart

Classical Potential Theory and Its Probabilistic Counterpart Author Joseph L. Doob
ISBN-10 3540412069
Release 2001-01-12
Pages 846
Download Link Click Here

From the reviews: "This huge book written in several years by one of the few mathematicians able to do it, appears as a precise and impressive study (not very easy to read) of this bothsided question that replaces, in a coherent way, without being encyclopaedic, a large library of books and papers scattered without a uniform language. Instead of summarizing the author gives his own way of exposition with original complements. This requires no preliminary knowledge. ...The purpose which the author explains in his introduction, i.e. a deep probabilistic interpretation of potential theory and a link between two great theories, appears fulfilled in a masterly manner". M. Brelot in Metrika (1986)

Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus Author Ioannis Karatzas
ISBN-10 9781461209492
Release 2014-03-27
Pages 470
Download Link Click Here

A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.


Probability Author Rick Durrett
ISBN-10 9781139491136
Release 2010-08-30
Download Link Click Here

This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.

Stochastic Integration and Differential Equations

Stochastic Integration and Differential Equations Author Philip E. Protter
ISBN-10 9783662100615
Release 2013-12-21
Pages 415
Download Link Click Here

It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, the more general version of the Girsanov theorem due to Lenglart, the Kazamaki-Novikov criteria for exponential local martingales to be martingales, and a modern treatment of compensators. Chapter 4 treats sigma martingales (important in finance theory) and gives a more comprehensive treatment of martingale representation, including both the Jacod-Yor theory and Emery’s examples of martingales that actually have martingale representation (thus going beyond the standard cases of Brownian motion and the compensated Poisson process). New topics added include an introduction to the theory of the expansion of filtrations, a treatment of the Fefferman martingale inequality, and that the dual space of the martingale space H^1 can be identified with BMO martingales. Solutions to selected exercises are available at the web site of the author, with current URL

Continuous Time Markov Processes

Continuous Time Markov Processes Author Thomas Milton Liggett
ISBN-10 9780821849491
Release 2010
Pages 271
Download Link Click Here

Markov processes are among the most important stochastic processes for both theory and applications. This book develops the general theory of these processes, and applies this theory to various special examples. The initial chapter is devoted to the most important classical example - one dimensional Brownian motion. This, together with a chapter on continuous time Markov chains, provides the motivation for the general setup based on semigroups and generators. Chapters on stochastic calculus and probabilistic potential theory give an introduction to some of the key areas of application of Brownian motion and its relatives. A chapter on interacting particle systems treats a more recently developed class of Markov processes that have as their origin problems in physics and biology. This is a textbook for a graduate course that can follow one that covers basic probabilistic limit theorems and discrete time processes.