Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Can the Laws of Physics Be Unified

Can the Laws of Physics Be Unified Author Paul Langacker
ISBN-10 9781400885503
Release 2017-02-28
Pages 288
Download Link Click Here

The standard model of particle physics describes our current understanding of nature's fundamental particles and their interactions, yet gaps remain. For example, it does not include a quantum theory of gravity, nor does it explain the existence of dark matter. Once complete, however, the standard model could provide a unified description of the very building blocks of the universe. Researchers have been chasing this dream for decades, and many wonder whether such a dream can ever be made a reality. Can the Laws of Physics Be Unified? is a short introduction to this exciting frontier of physics. The book is accessibly written for students and researchers across the sciences, and for scientifically minded general readers. Paul Langacker begins with an overview of the key breakthroughs that have shaped the standard model, and then describes the fundamental particles, their interactions, and their role in cosmology. He goes on to explain field theory, internal symmetries, Yang-Mills theories, strong and electroweak interactions, the Higgs boson discovery, and neutrino physics. Langacker then looks at the questions that are still unanswered: What is the nature of the mysterious dark matter and dark energy that make up roughly 95 percent of the universe? Why is there more matter than antimatter? How can we reconcile quantum mechanics and general relativity? Can the Laws of Physics Be Unified? describes the promising theoretical ideas and new experiments that could provide answers and weighs our prospects for establishing a truly unified theory of the smallest constituents of nature and their interactions.

How Did the First Stars and Galaxies Form

How Did the First Stars and Galaxies Form Author Abraham Loeb
ISBN-10 1400834066
Release 2010-07-19
Pages 216
Download Link Click Here

Though astrophysicists have developed a theoretical framework for understanding how the first stars and galaxies formed, only now are we able to begin testing those theories with actual observations of the very distant, early universe. We are entering a new and exciting era of discovery that will advance the frontiers of knowledge, and this book couldn't be more timely. It covers all the basic concepts in cosmology, drawing on insights from an astronomer who has pioneered much of this research over the past two decades. Abraham Loeb starts from first principles, tracing the theoretical foundations of cosmology and carefully explaining the physics behind them. Topics include the gravitational growth of perturbations in an expanding universe, the abundance and properties of dark matter halos and galaxies, reionization, the observational methods used to detect the earliest galaxies and probe the diffuse gas between them--and much more. Cosmology seeks to solve the fundamental mystery of our cosmic origins. This book offers a succinct and accessible primer at a time when breathtaking technological advances promise a wealth of new observational data on the first stars and galaxies. Provides a concise introduction to cosmology Covers all the basic concepts Gives an overview of the gravitational growth of perturbations in an expanding universe Explains the process of reionization Describes the observational methods used to detect the earliest galaxies

The Standard Model and Beyond Second Edition

The Standard Model and Beyond  Second Edition Author Paul Langacker
ISBN-10 9781498763226
Release 2017-06-26
Pages 650
Download Link Click Here

This new edition of The Standard Model and Beyond presents an advanced introduction to the physics and formalism of the standard model and other non-abelian gauge theories. It provides a solid background for understanding supersymmetry, string theory, extra dimensions, dynamical symmetry breaking, and cosmology. In addition to updating all of the experimental and phenomenological results from the first edition, it contains a new chapter on collider physics; expanded discussions of Higgs, neutrino, and dark matter physics; and many new problems. The book first reviews calculational techniques in field theory and the status of quantum electrodynamics. It then focuses on global and local symmetries and the construction of non-abelian gauge theories. The structure and tests of quantum chromodynamics, collider physics, the electroweak interactions and theory, and the physics of neutrino mass and mixing are thoroughly explored. The final chapter discusses the motivations for extending the standard model and examines supersymmetry, extended gauge groups, and grand unification. Thoroughly covering gauge field theories, symmetries, and topics beyond the standard model, this text equips readers with the tools to understand the structure and phenomenological consequences of the standard model, to construct extensions, and to perform calculations at tree level. It establishes the necessary background for readers to carry out more advanced research in particle physics. Supplementary materials are provided on the author’s website and a solutions manual is available for qualifying instructors.

Anomalies in Quantum Field Theory

Anomalies in Quantum Field Theory Author Reinhold A. Bertlmann
ISBN-10 0198507623
Release 2000-11-02
Pages 566
Download Link Click Here

An anomaly is the failure of classical symmetry to survive the process of quantization and regularization. The study of anomalies is the key to a deeper understanding of quantum field theory and has played an increasingly important role in the theory over the past 20 years. This text presents all the different aspects of the study of anomalies in an accessible and self-contained way. Much emphasis is now being placed on the formulation of the theory using the mathematical ideas of differential geometry and topology. This approach is followed here, and the derivations and calculations are given explicitly as an aid to students. Topics discussed include the relevant ideas from differential geometry and topology and the application of these paths (path integrals, differential forms, homotopy operators, etc.) to the study of anomalies. Chapters are devoted to abelian and nonabelian anomalies, consistent and covariant anomalies, and gravitational anomalies. The comprehensive overview of the theory presented in this book will be useful to both students and researchers.

What Does a Black Hole Look Like

What Does a Black Hole Look Like Author Charles D. Bailyn
ISBN-10 9781400850563
Release 2014-08-31
Pages 224
Download Link Click Here

Emitting no radiation or any other kind of information, black holes mark the edge of the universe--both physically and in our scientific understanding. Yet astronomers have found clear evidence for the existence of black holes, employing the same tools and techniques used to explore other celestial objects. In this sophisticated introduction, leading astronomer Charles Bailyn goes behind the theory and physics of black holes to describe how astronomers are observing these enigmatic objects and developing a remarkably detailed picture of what they look like and how they interact with their surroundings. Accessible to undergraduates and others with some knowledge of introductory college-level physics, this book presents the techniques used to identify and measure the mass and spin of celestial black holes. These key measurements demonstrate the existence of two kinds of black holes, those with masses a few times that of a typical star, and those with masses comparable to whole galaxies--supermassive black holes. The book provides a detailed account of the nature, formation, and growth of both kinds of black holes. The book also describes the possibility of observing theoretically predicted phenomena such as gravitational waves, wormholes, and Hawking radiation. A cutting-edge introduction to a subject that was once on the border between physics and science fiction, this book shows how black holes are becoming routine objects of empirical scientific study.

Fashion Faith and Fantasy in the New Physics of the Universe

Fashion  Faith  and Fantasy in the New Physics of the Universe Author Roger Penrose
ISBN-10 9781400880287
Release 2016-09-13
Pages 520
Download Link Click Here

What can fashionable ideas, blind faith, or pure fantasy possibly have to do with the scientific quest to understand the universe? Surely, theoretical physicists are immune to mere trends, dogmatic beliefs, or flights of fancy? In fact, acclaimed physicist and bestselling author Roger Penrose argues that researchers working at the extreme frontiers of physics are just as susceptible to these forces as anyone else. In this provocative book, he argues that fashion, faith, and fantasy, while sometimes productive and even essential in physics, may be leading today's researchers astray in three of the field's most important areas—string theory, quantum mechanics, and cosmology. Arguing that string theory has veered away from physical reality by positing six extra hidden dimensions, Penrose cautions that the fashionable nature of a theory can cloud our judgment of its plausibility. In the case of quantum mechanics, its stunning success in explaining the atomic universe has led to an uncritical faith that it must also apply to reasonably massive objects, and Penrose responds by suggesting possible changes in quantum theory. Turning to cosmology, he argues that most of the current fantastical ideas about the origins of the universe cannot be true, but that an even wilder reality may lie behind them. Finally, Penrose describes how fashion, faith, and fantasy have ironically also shaped his own work, from twistor theory, a possible alternative to string theory that is beginning to acquire a fashionable status, to "conformal cyclic cosmology," an idea so fantastic that it could be called "conformal crazy cosmology." The result is an important critique of some of the most significant developments in physics today from one of its most eminent figures.

Neutrinos in High Energy and Astroparticle Physics

Neutrinos in High Energy and Astroparticle Physics Author José Wagner Furtado Valle
ISBN-10 9783527411979
Release 2015-04-20
Pages 448
Download Link Click Here

This self–contained modern textbook provides a modern description of the Standard Model and its main extensions from the perspective of neutrino physics. In particular it includes a thorough discussion of the varieties of seesaw mechanism, with or without supersymmetry. It also discusses schemes where neutrino mass arises from lighter messengers, which might lie within reach of the world′s largest particle accelerator, the Large Hadron Collider. Throughout the text, the book stresses the role of neutrinos due to the fact that neutrino properties may serve as a guide to the correct model of unification, hence for a deeper understanding of high energy physics, and because neutrinos play an important role in astroparticle physics and cosmology. Each chapter includes summaries and set of problems, as well as further reading.

Shattered Symmetry

Shattered Symmetry Author Pieter Thyssen
ISBN-10 9780190620172
Release 2017-01-02
Pages 400
Download Link Click Here

The standard model of subatomic particles and the periodic table of the atoms have the common goal to bring order in the bewildering chaos of the constituents of matter. Their success relies on the presence of fundamental symmetries in their core. The purpose of the book is to share the admiration for the power and the beauty of these symmetries. The reader is taken on a journey from the basic geometric symmetry group of a circle to the sublime dynamic symmetries that govern the motions of the particles. The trail follows the lines of parentage linking groups upstream to the unitary symmetry of the eightfold way of quarks, and to the four-dimensional symmetry of the hydrogen atom. Along the way the theory of symmetry groups is gradually introduced with special emphasis on graphical representations. The final challenge is to open up the structure of Mendeleev's table which goes beyond the symmetry of the hydrogen atom. Breaking this symmetry to accommodate the multi-electron atoms requires to leave the common ground of linear algebras and explore the potential of non-linearity.

A Certain Uncertainty

A Certain Uncertainty Author Mark P. Silverman
ISBN-10 9781139992411
Release 2014-07-10
Download Link Click Here

Based around a series of real-life scenarios, this engaging introduction to statistical reasoning will teach you how to apply powerful statistical, qualitative and probabilistic tools in a technical context. From analysis of electricity bills, baseball statistics, and stock market fluctuations, through to profound questions about physics of fermions and bosons, decaying nuclei, and climate change, each chapter introduces relevant physical, statistical and mathematical principles step-by-step in an engaging narrative style, helping to develop practical proficiency in the use of probability and statistical reasoning. With numerous illustrations making it easy to focus on the most important information, this insightful book is perfect for students and researchers of any discipline interested in the interwoven tapestry of probability, statistics, and physics.

Can the Laws of Physics be Unified

Can the Laws of Physics be Unified Author A Zee
ISBN-10 0691145601
Release 2011-12-22
Download Link Click Here

Can the Laws of Physics be Unified has been writing in one form or another for most of life. You can find so many inspiration from Can the Laws of Physics be Unified also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Can the Laws of Physics be Unified book for free.

Discrete or Continuous

Discrete or Continuous Author Amit Hagar
ISBN-10 9781107062801
Release 2014-05-01
Pages 280
Download Link Click Here

Novel conceptual analysis, fresh historical perspectives, and concrete physical examples illuminate one of the most thought-provoking topics in physics.

Theory of Fundamental Processes

Theory of Fundamental Processes Author Richard Feynman
ISBN-10 9780429961052
Release 2018-02-19
Pages 188
Download Link Click Here

In these classic lectures, Richard Feynman first considers the basic ideas of quantum mechanics, treating the concept of amplitude in special detail and emphasizing that other things, such as the combination laws of angular momenta, are largely consequences of this concept. Feynman also discusses relativity and the idea of anti-particles, finally returning to a discussion of quantum electrodynamics, which takes up most of this volume.

Gauge Theories of the Strong Weak and Electromagnetic Interactions

Gauge Theories of the Strong  Weak  and Electromagnetic Interactions Author Chris Quigg
ISBN-10 9781400848225
Release 2013-09-22
Pages 496
Download Link Click Here

This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature--quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies

The Oxford Illustrated History of Science

The Oxford Illustrated History of Science Author Iwan Rhys Morus
ISBN-10 9780191640322
Release 2017-06-15
Pages 448
Download Link Click Here

The Oxford Illustrated History of Science is the first ever fully illustrated global history of science, from Aristotle to the atom bomb - and beyond. The first part of the book tells the story of science in both East and West from antiquity to the Enlightenment: from the ancient Mediterranean world to ancient China; from the exchanges between Islamic and Christian scholars in the Middle Ages to the Chinese invention of gunpowder, paper, and the printing press; from the Scientific Revolution of sixteenth and seventeenth century Europe to the intellectual ferment of the eighteenth century. The chapters that follow focus on the increasingly specialized story of science since end of the eighteenth century, covering experimental science in the laboratory from Michael Faraday to CERN; the exploration of nature, from intrepid Victorian explorers to twentieth century primatologists; the mapping of the universe, from the discovery of Uranus to Big Bang theory; the impact of evolutionary ideas, from Lamarck, Darwin, and Wallace to DNA; and the story of theoretical physics, from James Clark Maxwell to Quantum Theory and beyond. A concluding chapter reflects on how scientists have communicated their work to a wider public, from the Great Exhibition of 1851 to the internet in the early twenty-first century.

The Emerging Quantum

The Emerging Quantum Author Luis de la Peña
ISBN-10 9783319078939
Release 2014-07-15
Pages 366
Download Link Click Here

This monograph presents the latest findings from a long-term research project intended to identify the physics behind Quantum Mechanics. A fundamental theory for quantum mechanics is constructed from first physical principles, revealing quantization as an emergent phenomenon arising from a deeper stochastic process. As such, it offers the vibrant community working on the foundations of quantum mechanics an alternative contribution open to discussion. The book starts with a critical summary of the main conceptual problems that still beset quantum mechanics. The basic consideration is then introduced that any material system is an open system in permanent contact with the random zero-point radiation field, with which it may reach a state of equilibrium. Working from this basis, a comprehensive and self-consistent theoretical framework is then developed. The pillars of the quantum-mechanical formalism are derived, as well as the radiative corrections of nonrelativistic QED, while revealing the underlying physical mechanisms. The genesis of some of the central features of quantum theory is elucidated, such as atomic stability, the spin of the electron, quantum fluctuations, quantum nonlocality and entanglement. The theory developed here reaffirms fundamental scientific principles such as realism, causality, locality and objectivity.

Endless Universe

Endless Universe Author Paul J. Steinhardt
ISBN-10 9780385523110
Release 2007-05-29
Pages 256
Download Link Click Here

Two world-renowned scientists present an audacious new vision of the cosmos that “steals the thunder from the Big Bang theory.” —Wall Street Journal The Big Bang theory—widely regarded as the leading explanation for the origin of the universe—posits that space and time sprang into being about 14 billion years ago in a hot, expanding fireball of nearly infinite density. Over the last three decades the theory has been repeatedly revised to address such issues as how galaxies and stars first formed and why the expansion of the universe is speeding up today. Furthermore, an explanation has yet to be found for what caused the Big Bang in the first place. In Endless Universe, Paul J. Steinhardt and Neil Turok, both distinguished theoretical physicists, present a bold new cosmology. Steinhardt and Turok “contend that what we think of as the moment of creation was simply part of an infinite cycle of titanic collisions between our universe and a parallel world” (Discover). They recount the remarkable developments in astronomy, particle physics, and superstring theory that form the basis for their groundbreaking “Cyclic Universe” theory. According to this theory, the Big Bang was not the beginning of time but the bridge to a past filled with endlessly repeating cycles of evolution, each accompanied by the creation of new matter and the formation of new galaxies, stars, and planets. Endless Universe provides answers to longstanding problems with the Big Bang model, while offering a provocative new view of both the past and the future of the cosmos. It is a “theory that could solve the cosmic mystery” (USA Today).

Euler Through Time

Euler Through Time Author V. S. Varadarajan
ISBN-10 0821835807
Release 2006
Pages 302
Download Link Click Here

Euler is one of the greatest and most prolific mathematicians of all time. He wrote the first accessible books on calculus, created the theory of circular functions, and discovered new areas of research such as elliptic integrals, the calculus of variations, graph theory, divergent series, and so on. It took hundreds of years for his successors to develop in full the theories he began, and some of his themes are still at the center of today's mathematics. It is of great interest therefore to examine his work and its relation to current mathematics. This book attempts to do that. In number theory the discoveries he made empirically would require for their eventual understanding such sophisticated developments as the reciprocity laws and class field theory. His pioneering work on elliptic integrals is the precursor of the modern theory of abelian functions and abelian integrals. His evaluation of zeta and multizeta values is not only a fantastic and exciting story but very relevant to us, because they are at the confluence of much research in algebraic geometry and number theory today (Chapters 2 and 3 of the book). Anticipating his successors by more than a century, Euler created a theory of summation of series that do not converge in the traditional manner. Chapter 5 of the book treats the progression of ideas regarding divergent series from Euler to many parts of modern analysis and quantum physics. The last chapter contains a brief treatment of Euler products. Euler discovered the product formula over the primes for the zeta function as well as for a small number of what are now called Dirichlet $L$-functions. Here the book goes into the development of the theory of such Euler products and the role they play in number theory, thus offering the reader a glimpse of current developments (the Langlands program).