Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Complex Analysis

Complex Analysis Author Jerry R. Muir, Jr.
ISBN-10 9781118956397
Release 2015-05-06
Pages 280
Download Link Click Here

A thorough introduction to the theory of complex functions emphasizing the beauty, power, and counterintuitive nature of the subject Written with a reader-friendly approach, Complex Analysis: A Modern First Course in Function Theory features a self-contained, concise development of the fundamental principles of complex analysis. After laying groundwork on complex numbers and the calculus and geometric mapping properties of functions of a complex variable, the author uses power series as a unifying theme to define and study the many rich and occasionally surprising properties of analytic functions, including the Cauchy theory and residue theorem. The book concludes with a treatment of harmonic functions and an epilogue on the Riemann mapping theorem. Thoroughly classroom tested at multiple universities, Complex Analysis: A Modern First Course in Function Theory features: Plentiful exercises, both computational and theoretical, of varying levels of difficulty, including several that could be used for student projects Numerous figures to illustrate geometric concepts and constructions used in proofs Remarks at the conclusion of each section that place the main concepts in context, compare and contrast results with the calculus of real functions, and provide historical notes Appendices on the basics of sets and functions and a handful of useful results from advanced calculus Appropriate for students majoring in pure or applied mathematics as well as physics or engineering, Complex Analysis: A Modern First Course in Function Theory is an ideal textbook for a one-semester course in complex analysis for those with a strong foundation in multivariable calculus. The logically complete book also serves as a key reference for mathematicians, physicists, and engineers and is an excellent source for anyone interested in independently learning or reviewing the beautiful subject of complex analysis.



Function Theory of One Complex Variable

Function Theory of One Complex Variable Author Robert Everist Greene
ISBN-10 0821839624
Release 2006
Pages 504
Download Link Click Here

This book is a text for a first-year graduate course in complex analysis. It is a modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors."--BOOK JACKET.



Complex Analysis

Complex Analysis Author John Stalker
ISBN-10 9780817649197
Release 2009-10-03
Pages 228
Download Link Click Here

All modem introductions to complex analysis follow, more or less explicitly, the pattern laid down in Whittaker and Watson [75]. In "part I'' we find the foundational material, the basic definitions and theorems. In "part II" we find the examples and applications. Slowly we begin to understand why we read part I. Historically this is an anachronism. Pedagogically it is a disaster. Part II in fact predates part I, so clearly it can be taught first. Why should the student have to wade through hundreds of pages before finding out what the subject is good for? In teaching complex analysis this way, we risk more than just boredom. Beginning with a series of unmotivated definitions gives a misleading impression of complex analy sis in particular and of mathematics in general. The classical theory of analytic functions did not arise from the idle speculation of bored mathematicians on the possible conse quences of an arbitrary set of definitions; it was the natural, even inevitable, consequence of the practical need to answer questions about specific examples. In standard texts, after hundreds of pages of theorems about generic analytic functions with only the rational and trigonometric functions as examples, students inevitably begin to believe that the purpose of complex analysis is to produce more such theorems. We require introductory com plex analysis courses of our undergraduates and graduates because it is useful both within mathematics and beyond.



Complex Made Simple

Complex Made Simple Author David C. Ullrich
ISBN-10 9780821844793
Release 2008
Pages 489
Download Link Click Here

Perhaps uniquely among mathematical topics, complex analysis presents the student with the opportunity to learn a thoroughly developed subject that is rich in both theory and applications. Even in an introductory course, the theorems and techniques can have elegant formulations. But for any of these profound results, the student is often left asking: What does it really mean? Where does it come from? In Complex Made Simple, David Ullrich shows the student how to think like an analyst. In many cases, results are discovered or derived, with an explanation of how the students might have found the theorem on their own. Ullrich explains why a proof works. He will also, sometimes, explain why a tempting idea does not work. Complex Made Simple looks at the Dirichlet problem for harmonic functions twice: once using the Poisson integral for the unit disk and again in an informal section on Brownian motion, where the reader can understand intuitively how the Dirichlet problem works for general domains.Ullrich also takes considerable care to discuss the modular group, modular function, and covering maps, which become important ingredients in his modern treatment of the often-overlooked original proof of the Big Picard Theorem. This book is suitable for a first-year course in complex analysis. The exposition is aimed directly at the students, with plenty of details included. The prerequisite is a good course in advanced calculus or undergraduate analysis.



Complex Function Theory

Complex Function Theory Author Donald Sarason
ISBN-10 9780821844281
Release 2007-12-20
Pages 163
Download Link Click Here

Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation. The first edition was published with the title Notes on Complex Function Theory.



Complex Analysis

Complex Analysis Author Jane P. Gilman
ISBN-10 9780387747149
Release 2007-12-17
Pages 220
Download Link Click Here

Organizing the basic material of complex analysis in a unique manner, the authors of this versatile book aim is to present a precise and concise treatment of those parts of complex analysis that should be familiar to every research mathematician.



Function Theory of Several Complex Variables

Function Theory of Several Complex Variables Author Steven George Krantz
ISBN-10 9780821827246
Release 2001
Pages 564
Download Link Click Here

The theory of several complex variables can be studied from several different perspectives. In this book, Steven Krantz approaches the subject from the point of view of a classical analyst, emphasizing its function-theoretic aspects. He has taken particular care to write the book with the student in mind, with uniformly extensive and helpful explanations, numerous examples, and plentiful exercises of varying difficulty. In the spirit of a student-oriented text, Krantz begins with an introduction to the subject, including an insightful comparison of analysis of several complex variables with the more familiar theory of one complex variable. The main topics in the book include integral formulas, convexity and pseudoconvexity, methods from harmonic analysis, and several aspects of the $\overline{\partial}$ problem. Some further topics are zero sets of holomorphic functions, estimates, partial differential equations, approximation theory, the boundary behavior of holomorphic functions, inner functions, invariant metrics, and holomorphic mappings. While due attention is paid to algebraic aspects of several complex variables (sheaves, Cousin problems, etc.), the student with a background in real and complex variable theory, harmonic analysis, and differential equations will be most comfortable with this treatment. This book is suitable for a first graduate course in several complex variables.



An Introduction to Complex Analysis

An Introduction to Complex Analysis Author Wolfgang Tutschke
ISBN-10 9781584884781
Release 2004-06-25
Pages 480
Download Link Click Here

Like real analysis, complex analysis has generated methods indispensable to mathematics and its applications. Exploring the interactions between these two branches, this book uses the results of real analysis to lay the foundations of complex analysis and presents a unified structure of mathematical analysis as a whole. To set the groundwork and mitigate the difficulties newcomers often experience, An Introduction to Complex Analysis begins with a complete review of concepts and methods from real analysis, such as metric spaces and the Green-Gauss Integral Formula. The approach leads to brief, clear proofs of basic statements - a distinct advantage for those mainly interested in applications. Alternate approaches, such as Fichera's proof of the Goursat Theorem and Estermann's proof of the Cauchy's Integral Theorem, are also presented for comparison. Discussions include holomorphic functions, the Weierstrass Convergence Theorem, analytic continuation, isolated singularities, homotopy, Residue theory, conformal mappings, special functions and boundary value problems. More than 200 examples and 150 exercises illustrate the subject matter and make this book an ideal text for university courses on complex analysis, while the comprehensive compilation of theories and succinct proofs make this an excellent volume for reference.



Visual Complex Analysis

Visual Complex Analysis Author Tristan Needham
ISBN-10 0198534469
Release 1998
Pages 592
Download Link Click Here

Now available in paperback, this successful radical approach to complex analysis replaces the standard calculational arguments with new geometric ones. With several hundred diagrams, and far fewer prerequisites than usual, this is the first visual intuitive introduction to complex analysis. Although designed for use by undergraduates in mathematics and science, the novelty of the approach will also interest professional mathematicians.



Function Theory on Planar Domains

Function Theory on Planar Domains Author Stephen D. Fisher
ISBN-10 9780486151106
Release 2014-06-10
Pages 288
Download Link Click Here

This treatment of complex analysis focuses on function theory on a finitely connected planar domain. It emphasizes domains bounded by a finite number of disjoint analytic simple closed curves. 1983 edition.



An introduction to complex analysis

An introduction to complex analysis Author O. Carruth McGehee
ISBN-10 047133233X
Release 2000-09-15
Pages 425
Download Link Click Here

* Contains over 100 sophisticated graphics to provide helpful examples and reinforce important concepts



Elementary Theory of Analytic Functions of One or Several Complex Variables

Elementary Theory of Analytic Functions of One or Several Complex Variables Author Henri Cartan
ISBN-10 9780486318677
Release 2013-04-22
Pages 228
Download Link Click Here

Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.



Modern Fourier Analysis

Modern Fourier Analysis Author Loukas Grafakos
ISBN-10 9780387094342
Release 2009-04-28
Pages 507
Download Link Click Here

The great response to the publication of the book Classical and Modern Fourier Analysishasbeenverygratifying.IamdelightedthatSpringerhasofferedtopublish the second edition of this book in two volumes: Classical Fourier Analysis, 2nd Edition, and Modern Fourier Analysis, 2nd Edition. These volumes are mainly addressed to graduate students who wish to study Fourier analysis. This second volume is intended to serve as a text for a seco- semester course in the subject. It is designed to be a continuation of the rst v- ume. Chapters 1–5 in the rst volume contain Lebesgue spaces, Lorentz spaces and interpolation, maximal functions, Fourier transforms and distributions, an introd- tion to Fourier analysis on the n-torus, singular integrals of convolution type, and Littlewood–Paley theory. Armed with the knowledgeof this material, in this volume,the reader encounters more advanced topics in Fourier analysis whose development has led to important theorems. These theorems are proved in great detail and their proofs are organized to present the ow of ideas. The exercises at the end of each section enrich the material of the corresponding section and provide an opportunity to develop ad- tional intuition and deeper comprehension. The historical notes in each chapter are intended to provide an account of past research but also to suggest directions for further investigation. The auxiliary results referred to the appendix can be located in the rst volume.



Geometric Function Theory

Geometric Function Theory Author Steven G. Krantz
ISBN-10 9780817644406
Release 2007-09-19
Pages 314
Download Link Click Here

* Presented from a geometric analytical viewpoint, this work addresses advanced topics in complex analysis that verge on modern areas of research * Methodically designed with individual chapters containing a rich collection of exercises, examples, and illustrations



Complex Analysis in one Variable

Complex Analysis in one Variable Author NARASIMHAN
ISBN-10 9781475711066
Release 2012-12-06
Pages 268
Download Link Click Here

This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathema tics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is avai lable in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard's theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many applications. The presentation here has been strongly influenced by work on several complex variables.



A Second Course in Complex Analysis

A Second Course in Complex Analysis Author William A. Veech
ISBN-10 9780486151939
Release 2014-08-04
Pages 256
Download Link Click Here

Geared toward upper-level undergraduates and graduate students, this clear, self-contained treatment of important areas in complex analysis is chiefly classical in content and emphasizes geometry of complex mappings. 1967 edition.



Complex Functions

Complex Functions Author Gareth A. Jones
ISBN-10 052131366X
Release 1987-03-19
Pages 342
Download Link Click Here

Elliptic functions and Riemann surfaces played an important role in nineteenth-century mathematics. At the present time there is a great revival of interest in these topics not only for their own sake but also because of their applications to so many areas of mathematical research from group theory and number theory to topology and differential equations. In this book the authors give elementary accounts of many aspects of classical complex function theory including Möbius transformations, elliptic functions, Riemann surfaces, Fuchsian groups and modular functions. A distinctive feature of their presentation is the way in which they have incorporated into the text many interesting topics from other branches of mathematics. This book is based on lectures given to advanced undergraduates and is well-suited as a textbook for a second course in complex function theory. Professionals will also find it valuable as a straightforward introduction to a subject which is finding widespread application throughout mathematics.