Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Computability

Computability Author Nigel Cutland
ISBN-10 0521294657
Release 1980-06-19
Pages 251
Download Link Click Here

This introduction to recursive theory computability begins with a mathematical characterization of computable functions, develops the mathematical theory and includes a full discussion of noncomputability and undecidability. Later chapters move on to more advanced topics such as degrees of unsolvability and Gödel's Incompleteness Theorem.



Computability Theory

Computability Theory Author Herbert B. Enderton
ISBN-10 0123849594
Release 2010-12-30
Pages 192
Download Link Click Here

Computability Theory: An Introduction to Recursion Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The text includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable way. Frequent historical information presented throughout More extensive motivation for each of the topics than other texts currently available Connects with topics not included in other textbooks, such as complexity theory



Classical Recursion Theory

Classical Recursion Theory Author P. Odifreddi
ISBN-10 0080886590
Release 1992-02-04
Pages 667
Download Link Click Here

1988 marked the first centenary of Recursion Theory, since Dedekind's 1888 paper on the nature of number. Now available in paperback, this book is both a comprehensive reference for the subject and a textbook starting from first principles. Among the subjects covered are: various equivalent approaches to effective computability and their relations with computers and programming languages; a discussion of Church's thesis; a modern solution to Post's problem; global properties of Turing degrees; and a complete algebraic characterization of many-one degrees. Included are a number of applications to logic (in particular Gödel's theorems) and to computer science, for which Recursion Theory provides the theoretical foundation.



A Recursive Introduction to the Theory of Computation

A Recursive Introduction to the Theory of Computation Author Carl Smith
ISBN-10 9781441985019
Release 2012-12-06
Pages 148
Download Link Click Here

The aim of this textbook is to present an account of the theory of computation. After introducing the concept of a model of computation and presenting various examples, the author explores the limitations of effective computation via basic recursion theory. Self-reference and other methods are introduced as fundamental and basic tools for constructing and manipulating algorithms. From there the book considers the complexity of computations and the notion of a complexity measure is introduced. Finally, the book culminates in considering time and space measures and in classifying computable functions as being either feasible or not. The author assumes only a basic familiarity with discrete mathematics and computing, making this textbook ideal for a graduate-level introductory course. It is based on many such courses presented by the author and so numerous exercises are included. In addition, the solutions to most of these exercises are provided.



Recursively Enumerable Sets and Degrees

Recursively Enumerable Sets and Degrees Author Robert I. Soare
ISBN-10 3540152997
Release 1999-11-01
Pages 437
Download Link Click Here

..."The book, written by one of the main researchers on the field, gives a complete account of the theory of r.e. degrees. .... The definitions, results and proofs are always clearly motivated and explained before the formal presentation; the proofs are described with remarkable clarity and conciseness. The book is highly recommended to everyone interested in logic. It also provides a useful background to computer scientists, in particular to theoretical computer scientists." Acta Scientiarum Mathematicarum, Ungarn 1988 ..."The main purpose of this book is to introduce the reader to the main results and to the intricacies of the current theory for the recurseively enumerable sets and degrees. The author has managed to give a coherent exposition of a rather complex and messy area of logic, and with this book degree-theory is far more accessible to students and logicians in other fields than it used to be." Zentralblatt für Mathematik, 623.1988



Computability Theory

Computability Theory Author Neil D. Jones
ISBN-10 9781483218489
Release 2014-06-20
Pages 168
Download Link Click Here

Computability Theory: An Introduction provides information pertinent to the major concepts, constructions, and theorems of the elementary theory of computability of recursive functions. This book provides mathematical evidence for the validity of the Church–Turing thesis. Organized into six chapters, this book begins with an overview of the concept of effective process so that a clear understanding of the effective computability of partial and total functions is obtained. This text then introduces a formal development of the equivalence of Turing machine computability, enumerability, and decidability with other formulations. Other chapters consider the formulas of the predicate calculus, systems of recursion equations, and Post's production systems. This book discusses as well the fundamental properties of the partial recursive functions and the recursively enumerable sets. The final chapter deals with different formulations of the basic ideas of computability that are equivalent to Turing-computability. This book is a valuable resource for undergraduate or graduate students.



Enumerability Decidability Computability

Enumerability  Decidability  Computability Author Hans Hermes
ISBN-10 9783662116869
Release 2013-03-14
Pages 245
Download Link Click Here

The task of developing algorithms to solve problems has always been considered by mathematicians to be an especially interesting and im portant one. Normally an algorithm is applicable only to a narrowly limited group of problems. Such is for instance the Euclidean algorithm, which determines the greatest common divisor of two numbers, or the well-known procedure which is used to obtain the square root of a natural number in decimal notation. The more important these special algorithms are, all the more desirable it seems to have algorithms of a greater range of applicability at one's disposal. Throughout the centuries, attempts to provide algorithms applicable as widely as possible were rather unsuc cessful. It was only in the second half of the last century that the first appreciable advance took place. Namely, an important group of the inferences of the logic of predicates was given in the form of a calculus. (Here the Boolean algebra played an essential pioneer role. ) One could now perhaps have conjectured that all mathematical problems are solvable by algorithms. However, well-known, yet unsolved problems (problems like the word problem of group theory or Hilbert's tenth problem, which considers the question of solvability of Diophantine equations) were warnings to be careful. Nevertheless, the impulse had been given to search for the essence of algorithms. Leibniz already had inquired into this problem, but without success.



Recursive Functions and Metamathematics

Recursive Functions and Metamathematics Author Roman Murawski
ISBN-10 0792359046
Release 1999-09-30
Pages 391
Download Link Click Here

Recursive Functions and Metamathematics deals with problems of the completeness and decidability of theories, using as its main tool the theory of recursive functions. This theory is first introduced and discussed. Then Gödel's incompleteness theorems are presented, together with generalizations, strengthenings, and the decidability theory. The book also considers the historical and philosophical context of these issues and their philosophical and methodological consequences. Recent results and trends have been included, such as undecidable sentences of mathematical content, reverse mathematics. All the main results are presented in detail. The book is self-contained and presupposes only some knowledge of elementary mathematical logic. There is an extensive bibliography. Readership: Scholars and advanced students of logic, mathematics, philosophy of science.



An Early History of Recursive Functions and Computability

An Early History of Recursive Functions and Computability Author Rod Adams
ISBN-10 9780983700401
Release 2011
Pages 297
Download Link Click Here

Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.



Computability Complexity and Languages

Computability  Complexity  and Languages Author Martin D. Davis
ISBN-10 9781483264585
Release 2014-05-10
Pages 446
Download Link Click Here

Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science provides an introduction to the various aspects of theoretical computer science. Theoretical computer science is the mathematical study of models of computation. This text is composed of five parts encompassing 17 chapters, and begins with an introduction to the use of proofs in mathematics and the development of computability theory in the context of an extremely simple abstract programming language. The succeeding parts demonstrate the performance of abstract programming language using a macro expansion technique, along with presentations of the regular and context-free languages. Other parts deal with the aspects of logic that are important for computer science and the important theory of computational complexity, as well as the theory of NP-completeness. The closing part introduces the advanced recursion and polynomial-time computability theories, including the priority constructions for recursively enumerable Turing degrees. This book is intended primarily for undergraduate and graduate mathematics students.



Computable Analysis

Computable Analysis Author Klaus Weihrauch
ISBN-10 9783642569999
Release 2012-12-06
Pages 288
Download Link Click Here

Merging fundamental concepts of analysis and recursion theory to a new exciting theory, this book provides a solid fundament for studying various aspects of computability and complexity in analysis. It is the result of an introductory course given for several years and is written in a style suitable for graduate-level and senior students in computer science and mathematics. Many examples illustrate the new concepts while numerous exercises of varying difficulty extend the material and stimulate readers to work actively on the text.



Models of Computation

Models of Computation Author Maribel Fernández
ISBN-10 1848824343
Release 2009-04-14
Pages 184
Download Link Click Here

A Concise Introduction to Computation Models and Computability Theory provides an introduction to the essential concepts in computability, using several models of computation, from the standard Turing Machines and Recursive Functions, to the modern computation models inspired by quantum physics. An in-depth analysis of the basic concepts underlying each model of computation is provided. Divided into two parts, the first highlights the traditional computation models used in the first studies on computability: - Automata and Turing Machines; - Recursive functions and the Lambda-Calculus; - Logic-based computation models. and the second part covers object-oriented and interaction-based models. There is also a chapter on concurrency, and a final chapter on emergent computation models inspired by quantum mechanics. At the end of each chapter there is a discussion on the use of computation models in the design of programming languages.



Business Research Methodology With Cd

Business Research Methodology  With Cd Author Srivastava
ISBN-10 9781259081903
Release 1958
Pages 210
Download Link Click Here

Classic graduate-level introduction to theory of computability. Discusses general theory of computability, computable functions, operations on computable functions, Turing machines self-applied, unsolvable decision problems, applications of general theory, mathematical logic, Kleene hierarchy, more.



The Incomputable

The Incomputable Author S. Barry Cooper
ISBN-10 9783319436692
Release 2017-05-02
Pages 292
Download Link Click Here

This book questions the relevance of computation to the physical universe. Our theories deliver computational descriptions, but the gaps and discontinuities in our grasp suggest a need for continued discourse between researchers from different disciplines, and this book is unique in its focus on the mathematical theory of incomputability and its relevance for the real world. The core of the book consists of thirteen chapters in five parts on extended models of computation; the search for natural examples of incomputable objects; mind, matter, and computation; the nature of information, complexity, and randomness; and the mathematics of emergence and morphogenesis. This book will be of interest to researchers in the areas of theoretical computer science, mathematical logic, and philosophy.



Introduction to Automata Theory Formal Languages and Computation

Introduction to Automata Theory  Formal Languages and Computation Author Shyamalendu Kandar
ISBN-10 9789332516328
Release
Pages 650
Download Link Click Here

Formal languages and automata theory is the study of abstract machines and how these can be used for solving problems. The book has a simple and exhaustive approach to topics like automata theory, formal languages and theory of computation. These descriptions are followed by numerous relevant examples related to the topic. A brief introductory chapter on compilers explaining its relation to theory of computation is also given.



Computable Functions

Computable Functions Author Nikolai Konstantinovich Vereshchagin
ISBN-10 9780821827321
Release 2003
Pages 166
Download Link Click Here

This lively and concise book is based on the lectures for undergraduates given by the authors at the Moscow State University Mathematics Department and covers the basic notions of the general theory of computation. It begins with the definition of a computable function and an algorithm and discusses decidability, enumerability, universal functions, numberings and their properties, $m$-completeness, the fixed point theorem, arithmetical hierarchy, oracle computations, and degrees of unsolvability. The authors also cover specific computational models, such as Turing machines and recursive functions. The intended audience includes undergraduate students majoring in mathematics or computer science, and all mathematicians and programmers who would like to learn the basics of the general theory of computation.



Computability Theory

Computability Theory Author S. Barry Cooper
ISBN-10 9781351991964
Release 2017-09-06
Pages 420
Download Link Click Here

Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences. Written by a leading researcher, Computability Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The book includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable and lively way.