Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Computational Geometry and Computer Graphics in C

Computational Geometry and Computer Graphics in C  Author Michael Jay Laszlo
ISBN-10 0132908425
Release 1996
Pages 266
Download Link Click Here

This book provides an accessible introduction to methods in computational geometry and computer graphics. It emphasizes the efficient object-oriented implemenation of geometric methods with useable C++ code for all methods discussed.



Computational Geometry And Computer Graphics In C

Computational Geometry And Computer Graphics In C  Author Michael J. Laszlo
ISBN-10 8120314697
Release 2002
Pages 284
Download Link Click Here

Computational Geometry And Computer Graphics In C has been writing in one form or another for most of life. You can find so many inspiration from Computational Geometry And Computer Graphics In C also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Computational Geometry And Computer Graphics In C book for free.



Computational Geometry in C

Computational Geometry in C Author Joseph O'Rourke
ISBN-10 0521649765
Release 1998-10-13
Pages 376
Download Link Click Here

This is the newly revised and expanded edition of the popular introduction to the design and implementation of geometry algorithms arising in areas such as computer graphics, robotics, and engineering design. The second edition contains material on several new topics, such as randomized algorithms for polygon triangulation, planar point location, 3D convex hull construction, intersection algorithms for ray-segment and ray-triangle, and point-in-polyhedron. A new "Sources" chapter points to supplemental literature for readers needing more information on any topic. A novel aspect is the inclusion of working C code for many of the algorithms, with discussion of practical implementation issues. The self-contained treatment presumes only an elementary knowledge of mathematics, but reaches topics on the frontier of current research, making it a useful reference for practitioners at all levels. The code in this new edition is significantly improved from the first edition, and four new routines are included. Java versions for this new edition are also available. All code is accessible from the book's Web site (http://cs.smith.edu/~orourke/) or by anonymous ftp.



Computational Geometry

Computational Geometry Author Mark de Berg
ISBN-10 9783540779735
Release 2008-03-07
Pages 386
Download Link Click Here

This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.



Computational Geometry

Computational Geometry Author Franco P. Preparata
ISBN-10 9781461210986
Release 2012-12-06
Pages 398
Download Link Click Here

From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2



Guide to Computational Geometry Processing

Guide to Computational Geometry Processing Author J. Andreas Bærentzen
ISBN-10 9781447140757
Release 2012-05-31
Pages 326
Download Link Click Here

This book reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. Features: presents an overview of the underlying mathematical theory, covering vector spaces, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations; reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces; examines techniques for computing curvature from polygonal meshes; describes algorithms for mesh smoothing, mesh parametrization, and mesh optimization and simplification; discusses point location databases and convex hulls of point sets; investigates the reconstruction of triangle meshes from point clouds, including methods for registration of point clouds and surface reconstruction; provides additional material at a supplementary website; includes self-study exercises throughout the text.



Handbook of Computational Geometry

Handbook of Computational Geometry Author J.R. Sack
ISBN-10 0080529682
Release 1999-12-13
Pages 1075
Download Link Click Here

Computational Geometry is an area that provides solutions to geometric problems which arise in applications including Geographic Information Systems, Robotics and Computer Graphics. This Handbook provides an overview of key concepts and results in Computational Geometry. It may serve as a reference and study guide to the field. Not only the most advanced methods or solutions are described, but also many alternate ways of looking at problems and how to solve them.



Geometric Tools for Computer Graphics

Geometric Tools for Computer Graphics Author Philip Schneider
ISBN-10 0080478026
Release 2002-10-10
Pages 1056
Download Link Click Here

Do you spend too much time creating the building blocks of your graphics applications or finding and correcting errors? Geometric Tools for Computer Graphics is an extensive, conveniently organized collection of proven solutions to fundamental problems that you'd rather not solve over and over again, including building primitives, distance calculation, approximation, containment, decomposition, intersection determination, separation, and more. If you have a mathematics degree, this book will save you time and trouble. If you don't, it will help you achieve things you may feel are out of your reach. Inside, each problem is clearly stated and diagrammed, and the fully detailed solutions are presented in easy-to-understand pseudocode. You also get the mathematics and geometry background needed to make optimal use of the solutions, as well as an abundance of reference material contained in a series of appendices. Features Filled with robust, thoroughly tested solutions that will save you time and help you avoid costly errors. Covers problems relevant for both 2D and 3D graphics programming. Presents each problem and solution in stand-alone form allowing you the option of reading only those entries that matter to you. Provides the math and geometry background you need to understand the solutions and put them to work. Clearly diagrams each problem and presents solutions in easy-to-understand pseudocode. Resources associated with the book are available at the companion Web site www.mkp.com/gtcg. * Filled with robust, thoroughly tested solutions that will save you time and help you avoid costly errors. * Covers problems relevant for both 2D and 3D graphics programming. * Presents each problem and solution in stand-alone form allowing you the option of reading only those entries that matter to you. * Provides the math and geometry background you need to understand the solutions and put them to work. * Clearly diagrams each problem and presents solutions in easy-to-understand pseudocode. * Resources associated with the book are available at the companion Web site www.mkp.com/gtcg.



Handbook of Discrete and Computational Geometry Third Edition

Handbook of Discrete and Computational Geometry  Third Edition Author Csaba D. Toth
ISBN-10 9781498711425
Release 2017-11-22
Pages 1928
Download Link Click Here

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in ?elds as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed signi?cantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young ?eld of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.



Geometric Algebra for Computer Science

Geometric Algebra for Computer Science Author Leo Dorst
ISBN-10 9780080553108
Release 2010-07-26
Pages 664
Download Link Click Here

Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA



Geometric Data Structures for Computer Graphics

Geometric Data Structures for Computer Graphics Author Elmar Langetepe
ISBN-10 1568812353
Release 2006-01-16
Pages 369
Download Link Click Here

Data structures and tools from computational geometry help to solve problems in computer graphics; these methods have been widely adopted by the computer graphics community yielding elegant and efficient algorithms. This book focuses on algorithms and data structures that have proven to be versatile, efficient, fundamental, and easy to implement. The book familiarizes students, as well as practitioners in the field of computer graphics, with a wide range of data structures. The authors describe each data structure in detail, highlight fundamental properties, and present algorithms based on the data structure. A number of recent representative and useful algorithms from computer graphics are described in detail, illuminating the utilization of the data structure in a creative way.



Visibility Algorithms in the Plane

Visibility Algorithms in the Plane Author Subir Kumar Ghosh
ISBN-10 9781139463256
Release 2007-03-29
Pages
Download Link Click Here

A human observer can effortlessly identify visible portions of geometric objects present in the environment. However, computations of visible portions of objects from a viewpoint involving thousands of objects is a time consuming task even for high speed computers. To solve such visibility problems, efficient algorithms have been designed. This book presents some of these visibility algorithms in two dimensions. Specifically, basic algorithms for point visibility, weak visibility, shortest paths, visibility graphs, link paths and visibility queries are all discussed. Several geometric properties are also established through lemmas and theorems. With over 300 figures and hundreds of exercises, this book is ideal for graduate students and researchers in the field of computational geometry. It will also be useful as a reference for researchers working in algorithms, robotics, computer graphics and geometric graph theory, and some algorithms from the book can be used in a first course in computational geometry.



Discrete and Computational Geometry

Discrete and Computational Geometry Author Satyan L. Devadoss
ISBN-10 1400838983
Release 2011-04-11
Pages 280
Download Link Click Here

Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only). To obtain access, please e-mail: [email protected]



Generative Modeling for Computer Graphics and Cad

Generative Modeling for Computer Graphics and Cad Author John M. Snyder
ISBN-10 9781483260358
Release 2014-05-10
Pages 334
Download Link Click Here

Generative Modeling for Computer Graphics and Cad: Symbolic Shape Design Using Interval Analysis presents a symbolic approach to shape representation that is useful to the CAD/CAM and computer graphics communities. This book discusses the kinds of operators useful in a geometric modeling system, including arithmetic operators, vector and matrix operators, integration, differentiation, constraint solution, and constrained minimization. Associated with each operator are several methods that compute properties about the parametric functions represented with the operators. This text also elaborates how numerous rendering and analytical operations can be supported with only three methods—evaluation of the parametric function at a point, symbolic differentiation of the parametric function, and evaluation of an inclusion function for the parametric function. This publication is intended for people working in the area of computational geometry who are interested in a robust class of algorithms for manipulating shapes and those who want to know how human beings can specify and manipulate shape.



Haptic Rendering

Haptic Rendering Author Ming C. Lin
ISBN-10 9781439865149
Release 2008-07-25
Pages 623
Download Link Click Here

For a long time, human beings have dreamed of a virtual world where it is possible to interact with synthetic entities as if they were real. It has been shown that the ability to touch virtual objects increases the sense of presence in virtual environments. This book provides an authoritative overview of state-of-theart haptic rendering algorithms and their applications. The authors examine various approaches and techniques for designing touch-enabled interfaces for a number of applications, including medical training, model design, and maintainability analysis for virtual prototyping, scientific visualization, and creative processes.



Geometry and Topology for Mesh Generation

Geometry and Topology for Mesh Generation Author Herbert Edelsbrunner
ISBN-10 0521793092
Release 2001-05-28
Pages 177
Download Link Click Here

The book combines topics in mathematics (geometry and topology), computer science (algorithms), and engineering (mesh generation). The original motivation for these topics was the difficulty faced (both conceptually and in the technical execution) in any attempt to combine elements of combinatorial and of numerical algorithms. Mesh generation is a topic where a meaningful combination of these different approaches to problem solving is inevitable. The book develops methods from both areas that are amenable to combination, and explains recent breakthrough solutions to meshing that fit into this category.The book should be an ideal graduate text for courses on mesh generation. The specific material is selected giving preference to topics that are elementary, attractive, lend themselves to teaching, useful, and interesting.



Polygon Mesh Processing

Polygon Mesh Processing Author Mario Botsch
ISBN-10 9781568814261
Release 2010-10-07
Pages 250
Download Link Click Here

Geometry processing, or mesh processing, is a fast-growing area of research that uses concepts from applied mathematics, computer science, and engineering to design efficient algorithms for the acquisition, reconstruction, analysis, manipulation, simulation, and transmission of complex 3D models. Applications of geometry processing algorithms already cover a wide range of areas from multimedia, entertainment, and classical computer-aided design, to biomedical computing, reverse engineering, and scientific computing. Over the last several years, triangle meshes have become increasingly popular, as irregular triangle meshes have developed into a valuable alternative to traditional spline surfaces. This book discusses the whole geometry processing pipeline based on triangle meshes. The pipeline starts with data input, for example, a model acquired by 3D scanning techniques. This data can then go through processes of error removal, mesh creation, smoothing, conversion, morphing, and more. The authors detail techniques for those processes using triangle meshes. A supplemental website contains downloads and additional information.