Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Conics Text

Conics  Text Author Keith Kendig
ISBN-10 0883853353
Release 2005-08-11
Pages 403
Download Link Click Here

This book engages the reader in a journey of discovery through a spirited discussion among three characters: Philosopher, Teacher and Student. Throughout the book, Philosopher pursues his dream of a unified theory of conics, where exceptions are banished. With a helpful teacher and example-hungry student, the trio soon finds that conics reveal much of their beauty when viewed over the complex numbers. It is profusely illustrated with pictures, worked-out examples, and a CD containing 36 applets. Conics is written in an easy, conversational style, and many historical tidbits and other points of interest are scattered throughout the text. Many students can self-study the book without outside help. This book is ideal for anyone having a little exposure to linear algebra and complex numbers.



Analytical Conics

Analytical Conics Author Barry Spain
ISBN-10 9780486457734
Release 2007-01-01
Pages 145
Download Link Click Here

This concise text introduces students to analytical geometry, covering basic ideas and methods. Readily intelligible to any student with a sound mathematical background, it is designed both for undergraduates and for math majors. It will prove particularly valuable in preparing readers for more advanced treatments. The text begins with an overview of the analytical geometry of the straight line, circle, and the conics in their standard forms. It proceeds to discussions of translations and rotations of axes, and of the general equation of the second degree. The concept of the line at infinity is introduced, and the main properties of conics and pencils of conics are derived from the general equation. The fundamentals of cross-ratio, homographic correspondence, and line-coordinates are explored, including applications of the latter to focal properties. The final chapter provides a compact account of generalized homogeneous coordinates, and a helpful appendix presents solutions to many of the examples.



Geometri eskie svojstva krivyh vtorogo por dka

Geometri eskie svojstva krivyh vtorogo por  dka Author Arseny V. Akopyan
ISBN-10 0821884328
Release
Pages 134
Download Link Click Here

"Geometry Of Conics deals with the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, this book moves to less trivial results, both classical and contemporary. It demonstrates the advantage of purely geometric methods of studying conics."--Publisher's website.



Conics Text

Conics  Text Author Keith Kendig
ISBN-10 0883853353
Release 2005-08-11
Pages 403
Download Link Click Here

This book engages the reader in a journey of discovery through a spirited discussion among three characters: Philosopher, Teacher and Student. Throughout the book, Philosopher pursues his dream of a unified theory of conics, where exceptions are banished. With a helpful teacher and example-hungry student, the trio soon finds that conics reveal much of their beauty when viewed over the complex numbers. It is profusely illustrated with pictures, worked-out examples, and a CD containing 36 applets. Conics is written in an easy, conversational style, and many historical tidbits and other points of interest are scattered throughout the text. Many students can self-study the book without outside help. This book is ideal for anyone having a little exposure to linear algebra and complex numbers.



Sink Or Float

Sink Or Float Author Keith Kendig
ISBN-10 0883853396
Release 2008
Pages 375
Download Link Click Here

Sink or Float: Thought Problems in Math and Physics is a collection of problems drawn from mathematics and the real world. Its multiple-choice format forces the reader to become actively involved in deciding upon the answer. The book s aim is to show just how much can be learned by using everyday common sense. The problems are all concrete and understandable by nearly anyone, meaning that not only will students become caught up in some of the questions, but professional mathematicians, too, will easily get hooked. The more than 250 questions cover a wide swath of classical math and physics. Each problem's solution, with explanation, appears in the answer section at the end of the book. A notable feature is the generous sprinkling of boxes appearing throughout the text. These contain historical asides or little-known facts. The problems themselves can easily turn into serious debate-starters, and the book will find a natural home in the classroom.



New Horizons in Geometry

New Horizons in Geometry Author Tom M. Apostol
ISBN-10 9780883853542
Release 2012
Pages 513
Download Link Click Here

New Horizons in Geometry represents the fruits of 15 years of work in geometry by a remarkable team of prize-winning authors—Tom Apostol and Mamikon Mnatsakanian. It serves as a capstone to an amazing collaboration. Apostol and Mamikon provide fresh and powerful insights into geometry that requires only a modest background in mathematics. Using new and intuitively rich methods, they give beautifully illustrated proofs of results, the majority of which are new, and frequently develop extensions of familiar theorems that are often surprising and sometimes astounding. It is mathematical exposition of the highest order. The hundreds of full color illustrations by Mamikon are visually enticing and provide great motivation to read further and savor the wonderful results. Lengths, areas, and volumes of curves, surfaces, and solids are explored from a visually captivating perspective. It is an understatement to say that Apostol and Mamikon have breathed new life into geometry.



Practical Conic Sections

Practical Conic Sections Author J. W. Downs
ISBN-10 9780486148885
Release 2012-10-16
Pages 112
Download Link Click Here

Using examples from everyday life, this text studies ellipses, parabolas, and hyperbolas. Explores their ancient origins and describes the reflective properties and roles of curves in design applications. 1993 edition. Includes 98 figures.



Logic as Algebra

Logic as Algebra Author Paul Halmos
ISBN-10 0883853272
Release 1998-09-03
Pages 141
Download Link Click Here

An introduction to logic from the perspective of algebra.



Euler

Euler Author William Dunham
ISBN-10 0883853280
Release 1999-03-04
Pages 185
Download Link Click Here

Leonhard Euler was one of the most prolific mathematicians that have ever lived. This book examines the huge scope of mathematical areas explored and developed by Euler, which includes number theory, combinatorics, geometry, complex variables and many more. The information known to Euler over 300 years ago is discussed, and many of his advances are reconstructed. Readers will be left in no doubt about the brilliance and pervasive influence of Euler's work.



A Garden of Integrals

A Garden of Integrals Author Frank Burk
ISBN-10 088385337X
Release 2007-08-30
Pages 281
Download Link Click Here

Burk proves the basic properties of various integrals, draws comparisons and analyses their uses.



The Beginnings and Evolution of Algebra

The Beginnings and Evolution of Algebra Author I. G. Bashmakova
ISBN-10 0883853299
Release 2000-04-27
Pages 179
Download Link Click Here

An examination of the evolution of one of the cornerstones of modern mathematics.



A Guide to Plane Algebraic Curves

A Guide to Plane Algebraic Curves Author Keith Kendig
ISBN-10 9780883853535
Release 2011
Pages 193
Download Link Click Here

This Guide is a friendly introduction to plane algebraic curves. It emphasizes geometry and intuition, and the presentation is kept concrete. You'll find an abundance of pictures and examples to help develop your intuition about the subject, which is so basic to understanding and asking fruitful questions. Highlights of the elementary theory are covered, which for some could be an end in itself, and for others an invitation to investigate further. Proofs, when given, are mostly sketched, some in more detail, but typically with less. References to texts that provide further discussion are often included. Computer algebra software has made getting around in algebraic geometry much easier. Algebraic curves and geometry are now being applied to areas such as cryptography, complexity and coding theory, robotics, biological networks, and coupled dynamical systems. Algebraic curves were used in Andrew Wiles' proof of Fermat's Last Theorem, and to understand string theory, you need to know some algebraic geometry. There are other areas on the horizon for which the concepts and tools of algebraic curves and geometry hold tantalizing promise. This introduction to algebraic curves will be appropriate for a wide segment of scientists and engineers wanting an entrance to this burgeoning subject.



In Polya s Footsteps

In Polya s Footsteps Author Ross Honsberger
ISBN-10 0883853264
Release 1997-10-30
Pages 315
Download Link Click Here

General mathematical essays as well as problems from various national and international Olympiads.



Linear Algebra Problem Book

Linear Algebra Problem Book Author Paul R. Halmos
ISBN-10 0883853221
Release 1995
Pages 336
Download Link Click Here

Takes the student step by step from basic axioms to advanced concepts. 164 problems, each with hints and full solutions.



A Mathematical Space Odyssey

A Mathematical Space Odyssey Author Claudi Alsina
ISBN-10 9780883853580
Release 2015-08-21
Pages 288
Download Link Click Here

Solid geometry is the traditional name for what we call today the geometry of three-dimensional Euclidean space. Courses in solid geometry have largely disappeared from American high schools and colleges. The authors are convinced that a mathematical exploration of three-dimensional geometry merits some attention in today’s curriculum. A Mathematical Space Odyssey: Solid Geometry in the 21st Century is devoted to presenting techniques for proving a variety of mathematical results in three-dimensional space, techniques that may improve one’s ability to think visually. Special attention is given to the classical icons of solid geometry (prisms, pyramids, platonic solids, cones, cylinders, and spheres) and many new and classical results: Cavalieri’s principle, Commandino’s theorem, de Gua’s theorem, Prince Rupert’s cube, the Menger sponge, the Schwarz lantern, Euler’s rotation theorem, the Loomis-Whitney inequality, Pythagorean theorems in three dimensions, etc. The authors devote a chapter to each of the following basic techniques for exploring space and proving theorems: enumeration, representation, dissection, plane sections, intersection, iteration, motion, projection, and folding and unfolding. In addition to many figures illustrating theorems and their proofs, a selection of photographs of three-dimensional works of art and architecture are included. Each chapter includes a selection of Challenges for the reader to explore further properties and applications. It concludes with solutions to all the Challenges in the book, references, and a complete index. Readers should be familiar with high school algebra, plane and analytic geometry, and trigonometry. While brief appearances of calculus do occur, no knowledge of calculus is necessary to enjoy this book.



Conics Text

Conics  Text Author Keith Kendig
ISBN-10 0883853353
Release 2005-08-11
Pages 403
Download Link Click Here

This book engages the reader in a journey of discovery through a spirited discussion among three characters: Philosopher, Teacher and Student. Throughout the book, Philosopher pursues his dream of a unified theory of conics, where exceptions are banished. With a helpful teacher and example-hungry student, the trio soon finds that conics reveal much of their beauty when viewed over the complex numbers. It is profusely illustrated with pictures, worked-out examples, and a CD containing 36 applets. Conics is written in an easy, conversational style, and many historical tidbits and other points of interest are scattered throughout the text. Many students can self-study the book without outside help. This book is ideal for anyone having a little exposure to linear algebra and complex numbers.



A Guide to Plane Algebraic Curves

A Guide to Plane Algebraic Curves Author Keith Kendig
ISBN-10 9780883853535
Release 2011
Pages 193
Download Link Click Here

This Guide is a friendly introduction to plane algebraic curves. It emphasizes geometry and intuition, and the presentation is kept concrete. You'll find an abundance of pictures and examples to help develop your intuition about the subject, which is so basic to understanding and asking fruitful questions. Highlights of the elementary theory are covered, which for some could be an end in itself, and for others an invitation to investigate further. Proofs, when given, are mostly sketched, some in more detail, but typically with less. References to texts that provide further discussion are often included. Computer algebra software has made getting around in algebraic geometry much easier. Algebraic curves and geometry are now being applied to areas such as cryptography, complexity and coding theory, robotics, biological networks, and coupled dynamical systems. Algebraic curves were used in Andrew Wiles' proof of Fermat's Last Theorem, and to understand string theory, you need to know some algebraic geometry. There are other areas on the horizon for which the concepts and tools of algebraic curves and geometry hold tantalizing promise. This introduction to algebraic curves will be appropriate for a wide segment of scientists and engineers wanting an entrance to this burgeoning subject.