Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Conjugate Gradient Algorithms in Nonconvex Optimization

Conjugate Gradient Algorithms in Nonconvex Optimization Author Radoslaw Pytlak
ISBN-10 9783540856344
Release 2008-11-18
Pages 478
Download Link Click Here

This book details algorithms for large-scale unconstrained and bound constrained optimization. It shows optimization techniques from a conjugate gradient algorithm perspective as well as methods of shortest residuals, which have been developed by the author.

Smart Water Grids

Smart Water Grids Author Panagiotis Tsakalides
ISBN-10 9781351986175
Release 2018-04-17
Pages 348
Download Link Click Here

This book will present the best practices for designing, implementing, and deploying cyber-physical systems tailored to the needs of smart water grids. These grids can utilize the intelligence, autonomy, and adaptability offered by CPS for data on consumption, new alternatives for water treatment and reusability, and the impacts of climate change on water sources and urban infrastructure. It will examine topics such as smart sensing, distributed processing, networked control, enabling technologies, and heterogeneous networked topologies, and will also include case studies which will cover different aspects of the water life cycle, such as desalination, distribution, treatment, and recycling.

Nonconvex Optimization in Mechanics

Nonconvex Optimization in Mechanics Author E.S. Mistakidis
ISBN-10 9781461558293
Release 2013-11-21
Pages 288
Download Link Click Here

Nonconvexity and nonsmoothness arise in a large class of engineering applica tions. In many cases of practical importance the possibilities offered by opti mization with its algorithms and heuristics can substantially improve the per formance and the range of applicability of classical computational mechanics algorithms. For a class of problems this approach is the only one that really works. The present book presents in a comprehensive way the application of opti mization algorithms and heuristics in smooth and nonsmooth mechanics. The necessity of this approach is presented to the reader through simple, represen tative examples. As things become more complex, the necessary material from convex and nonconvex optimization and from mechanics are introduced in a self-contained way. Unilateral contact and friction problems, adhesive contact and delamination problems, nonconvex elastoplasticity, fractal friction laws, frames with semi rigid connections, are among the applications which are treated in details here. Working algorithms are given for each application and are demonstrated by means of representative examples. The interested reader will find helpful references to up-to-date scientific and technical literature so that to be able to work on research or engineering topics which are not directly covered here.

Optimization and Its Applications in Control and Data Sciences

Optimization and Its Applications in Control and Data Sciences Author Boris Goldengorin
ISBN-10 9783319420561
Release 2016-09-29
Pages 507
Download Link Click Here

This book focuses on recent research in modern optimization and its implications in control and data analysis. This book is a collection of papers from the conference “Optimization and Its Applications in Control and Data Science” dedicated to Professor Boris T. Polyak, which was held in Moscow, Russia on May 13-15, 2015. This book reflects developments in theory and applications rooted by Professor Polyak’s fundamental contributions to constrained and unconstrained optimization, differentiable and nonsmooth functions, control theory and approximation. Each paper focuses on techniques for solving complex optimization problems in different application areas and recent developments in optimization theory and methods. Open problems in optimization, game theory and control theory are included in this collection which will interest engineers and researchers working with efficient algorithms and software for solving optimization problems in market and data analysis. Theoreticians in operations research, applied mathematics, algorithm design, artificial intelligence, machine learning, and software engineering will find this book useful and graduate students will find the state-of-the-art research valuable.

Conjugate Gradient Algorithms and Finite Element Methods

Conjugate Gradient Algorithms and Finite Element Methods Author Michal Krizek
ISBN-10 9783642185601
Release 2012-12-06
Pages 384
Download Link Click Here

The position taken in this collection of pedagogically written essays is that conjugate gradient algorithms and finite element methods complement each other extremely well. Via their combinations practitioners have been able to solve complicated, direct and inverse, multidemensional problems modeled by ordinary or partial differential equations and inequalities, not necessarily linear, optimal control and optimal design being part of these problems. The aim of this book is to present both methods in the context of complicated problems modeled by linear and nonlinear partial differential equations, to provide an in-depth discussion on their implementation aspects. The authors show that conjugate gradient methods and finite element methods apply to the solution of real-life problems. They address graduate students as well as experts in scientific computing.


Optimization Author Elijah Polak
ISBN-10 9781461206637
Release 2012-12-06
Pages 782
Download Link Click Here

This book deals with optimality conditions, algorithms, and discretization tech niques for nonlinear programming, semi-infinite optimization, and optimal con trol problems. The unifying thread in the presentation consists of an abstract theory, within which optimality conditions are expressed in the form of zeros of optimality junctions, algorithms are characterized by point-to-set iteration maps, and all the numerical approximations required in the solution of semi-infinite optimization and optimal control problems are treated within the context of con sistent approximations and algorithm implementation techniques. Traditionally, necessary optimality conditions for optimization problems are presented in Lagrange, F. John, or Karush-Kuhn-Tucker multiplier forms, with gradients used for smooth problems and subgradients for nonsmooth prob lems. We present these classical optimality conditions and show that they are satisfied at a point if and only if this point is a zero of an upper semicontinuous optimality junction. The use of optimality functions has several advantages. First, optimality functions can be used in an abstract study of optimization algo rithms. Second, many optimization algorithms can be shown to use search directions that are obtained in evaluating optimality functions, thus establishing a clear relationship between optimality conditions and algorithms. Third, estab lishing optimality conditions for highly complex problems, such as optimal con trol problems with control and trajectory constraints, is much easier in terms of optimality functions than in the classical manner. In addition, the relationship between optimality conditions for finite-dimensional problems and semi-infinite optimization and optimal control problems becomes transparent.

Large Scale Nonlinear Optimization

Large Scale Nonlinear Optimization Author Gianni Pillo
ISBN-10 9780387300658
Release 2006-06-03
Pages 298
Download Link Click Here

This book reviews and discusses recent advances in the development of methods and algorithms for nonlinear optimization and its applications, focusing on the large-dimensional case, the current forefront of much research. Individual chapters, contributed by eminent authorities, provide an up-to-date overview of the field from different and complementary standpoints, including theoretical analysis, algorithmic development, implementation issues and applications.

Numerical Optimization

Numerical Optimization Author Jorge Nocedal
ISBN-10 9780387400655
Release 2006-12-11
Pages 664
Download Link Click Here

Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.

Non Convex Optimization for Machine Learning

Non Convex Optimization for Machine Learning Author Prateek Jain
ISBN-10 1680833685
Release 2018-02-28
Pages 218
Download Link Click Here

Non-convex Optimization for Machine Learning takes an in-depth look at the basics of non-convex optimization with applications to machine learning. It introduces the rich literature in this area, as well as equipping the reader with the tools and techniques needed to analyze these simple procedures for non-convex problems. Non-convex Optimization for Machine Learning is as self-contained as possible while not losing focus of the main topic of non-convex optimization techniques. Entire chapters are devoted to present a tutorial-like treatment of basic concepts in convex analysis and optimization, as well as their non-convex counterparts. As such, this monograph can be used for a semester-length course on the basics of non-convex optimization with applications to machine learning. On the other hand, it is also possible to cherry pick individual portions, such the chapter on sparse recovery, or the EM algorithm, for inclusion in a broader course. Several courses such as those in machine learning, optimization, and signal processing may benefit from the inclusion of such topics. Non-convex Optimization for Machine Learning concludes with a look at four interesting applications in the areas of machine learning and signal processing and explores how the non-convex optimization techniques introduced earlier can be used to solve these problems.

Neural Networks in Optimization

Neural Networks in Optimization Author Xiang-Sun Zhang
ISBN-10 0792365151
Release 2000-10-31
Pages 367
Download Link Click Here

The book consists of three parts. The first part introduces concepts and algorithms in optimization theory, which have been used in neural network research. The second part covers main neural network models and their theoretical analysis. The third part of the book introduces various neural network models for solving nonlinear programming problems and combinatorial optimization problems. Audience: Graduate students and researchers who are interested in the intersection of optimization theory and artificial neural networks. The book is appropriate for graduate courses.

Iterative Methods for Optimization

Iterative Methods for Optimization Author C. T. Kelley
ISBN-10 161197092X
Release 1999
Pages 180
Download Link Click Here

This book presents a carefully selected group of methods for unconstrained and bound constrained optimization problems and analyzes them in depth both theoretically and algorithmically. It focuses on clarity in algorithmic description and analysis rather than generality, and while it provides pointers to the literature for the most general theoretical results and robust software, the author thinks it is more important that readers have a complete understanding of special cases that convey essential ideas. A companion to Kelley's book, Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995), this book contains many exercises and examples and can be used as a text, a tutorial for self-study, or a reference. Iterative Methods for Optimization does more than cover traditional gradient-based optimization: it is the first book to treat sampling methods, including the Hooke-Jeeves, implicit filtering, MDS, and Nelder-Mead schemes in a unified way, and also the first book to make connections between sampling methods and the traditional gradient-methods. Each of the main algorithms in the text is described in pseudocode, and a collection of MATLAB codes is available. Thus, readers can experiment with the algorithms in an easy way as well as implement them in other languages.

State of the Art in Global Optimization

State of the Art in Global Optimization Author Christodoulos A. Floudas
ISBN-10 9781461334378
Release 2013-12-01
Pages 654
Download Link Click Here

Optimization problems abound in most fields of science, engineering, and tech nology. In many of these problems it is necessary to compute the global optimum (or a good approximation) of a multivariable function. The variables that define the function to be optimized can be continuous and/or discrete and, in addition, many times satisfy certain constraints. Global optimization problems belong to the complexity class of NP-hard prob lems. Such problems are very difficult to solve. Traditional descent optimization algorithms based on local information are not adequate for solving these problems. In most cases of practical interest the number of local optima increases, on the aver age, exponentially with the size of the problem (number of variables). Furthermore, most of the traditional approaches fail to escape from a local optimum in order to continue the search for the global solution. Global optimization has received a lot of attention in the past ten years, due to the success of new algorithms for solving large classes of problems from diverse areas such as engineering design and control, computational chemistry and biology, structural optimization, computer science, operations research, and economics. This book contains refereed invited papers presented at the conference on "State of the Art in Global Optimization: Computational Methods and Applications" held at Princeton University, April 28-30, 1995. The conference presented current re search on global optimization and related applications in science and engineering. The papers included in this book cover a wide spectrum of approaches for solving global optimization problems and applications.

Generalized Convexity and Vector Optimization

Generalized Convexity and Vector Optimization Author Shashi K. Mishra
ISBN-10 9783540856719
Release 2008-12-19
Pages 294
Download Link Click Here

The present lecture note is dedicated to the study of the optimality conditions and the duality results for nonlinear vector optimization problems, in ?nite and in?nite dimensions. The problems include are nonlinear vector optimization problems, s- metric dual problems, continuous-time vector optimization problems, relationships between vector optimization and variational inequality problems. Nonlinear vector optimization problems arise in several contexts such as in the building and interpretation of economic models; the study of various technolo- cal processes; the development of optimal choices in ?nance; management science; production processes; transportation problems and statistical decisions, etc. In preparing this lecture note a special effort has been made to obtain a se- contained treatment of the subjects; so we hope that this may be a suitable source for a beginner in this fast growing area of research, a semester graduate course in nonlinear programing, and a good reference book. This book may be useful to theoretical economists, engineers, and applied researchers involved in this area of active research. The lecture note is divided into eight chapters: Chapter 1 brie?y deals with the notion of nonlinear programing problems with basic notations and preliminaries. Chapter 2 deals with various concepts of convex sets, convex functions, invex set, invex functions, quasiinvex functions, pseudoinvex functions, type I and generalized type I functions, V-invex functions, and univex functions.

Convex Optimization

Convex Optimization Author Sébastien Bubeck
ISBN-10 1601988605
Release 2015-10-28
Pages 142
Download Link Click Here

This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. It begins with the fundamental theory of black-box optimization and proceeds to guide the reader through recent advances in structural optimization and stochastic optimization. The presentation of black-box optimization, strongly influenced by the seminal book by Nesterov, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. Special attention is also given to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging), and discussing their relevance in machine learning. The text provides a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization it discusses stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. It also briefly touches upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.

Introductory Lectures on Convex Optimization

Introductory Lectures on Convex Optimization Author Y. Nesterov
ISBN-10 9781441988539
Release 2013-12-01
Pages 236
Download Link Click Here

It was in the middle of the 1980s, when the seminal paper by Kar markar opened a new epoch in nonlinear optimization. The importance of this paper, containing a new polynomial-time algorithm for linear op timization problems, was not only in its complexity bound. At that time, the most surprising feature of this algorithm was that the theoretical pre diction of its high efficiency was supported by excellent computational results. This unusual fact dramatically changed the style and direc tions of the research in nonlinear optimization. Thereafter it became more and more common that the new methods were provided with a complexity analysis, which was considered a better justification of their efficiency than computational experiments. In a new rapidly develop ing field, which got the name "polynomial-time interior-point methods", such a justification was obligatory. Afteralmost fifteen years of intensive research, the main results of this development started to appear in monographs [12, 14, 16, 17, 18, 19]. Approximately at that time the author was asked to prepare a new course on nonlinear optimization for graduate students. The idea was to create a course which would reflect the new developments in the field. Actually, this was a major challenge. At the time only the theory of interior-point methods for linear optimization was polished enough to be explained to students. The general theory of self-concordant functions had appeared in print only once in the form of research monograph [12].

Approximation and Complexity in Numerical Optimization

Approximation and Complexity in Numerical Optimization Author Panos M. Pardalos
ISBN-10 9781475731453
Release 2013-06-29
Pages 581
Download Link Click Here

There has been much recent progress in approximation algorithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. In discrete (or combinatorial) optimization many approaches have been developed recently that link the discrete universe to the continuous universe through geomet ric, analytic, and algebraic techniques. Such techniques include global optimization formulations, semidefinite programming, and spectral theory. As a result new ap proximate algorithms have been discovered and many new computational approaches have been developed. Similarly, for many continuous nonconvex optimization prob lems, new approximate algorithms have been developed based on semidefinite pro gramming and new randomization techniques. On the other hand, computational complexity, originating from the interactions between computer science and numeri cal optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty. The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable. The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions. A conference on Approximation and Complexity in Numerical Optimization: Con tinuous and Discrete Problems was held during February 28 to March 2, 1999 at the Center for Applied Optimization of the University of Florida.

Convex Optimization in Signal Processing and Communications

Convex Optimization in Signal Processing and Communications Author Daniel P. Palomar
ISBN-10 9780521762229
Release 2010
Pages 498
Download Link Click Here

Leading experts provide the theoretical underpinnings of the subject plus tutorials on a wide range of applications, from automatic code generation to robust broadband beamforming. Emphasis on cutting-edge research and formulating problems in convex form make this an ideal textbook for advanced graduate courses and a useful self-study guide.