Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Deep Learning for Business with Python

Deep Learning for Business with Python Author N. Lewis
ISBN-10 1539681556
Release 2016-10-27
Pages 250
Download Link Click Here

Leverage Deep Learning for Business Analysis - with Python! Deep Learning for Business With Python takes you on a gentle, fun and unhurried journey to building your own deep neural network models for business use in Python. It demystifies deep learning by taking a how-to approach through a series of business case studies. Using plain language, it offers a simple, intuitive, practical, non-mathematical, easy to follow guide to the most successful ideas, outstanding techniques and usable solutions available using Python. QUICK AND EASY: Deep Learning for Business With Python offers the ideal introduction to deep learning for business analysis. It is designed to be accessible. It will teach you, in simple and easy-to-understand terms, how to take advantage of deep learning to enhance business outcomes using Python. NO EXPERIENCE?: I'm assuming you never did like linear algebra, don't want to see things derived, dislike complicated computer code, and you're here because you want to see how to use deep neural networks for business problems explained in plain language, and try them out for yourself. THIS BOOK IS FOR YOU IF YOU WANT: Explanations rather than mathematical derivation Real world applications that make sense. Illustrations to deepen your understanding. Worked examples you can easily follow and immediately implement. Ideas you can actually use and try on your own data. TAKE THE SHORTCUT: Through a simple to follow process you will learn how to build deep neural network models for business problems using Python. Once you have mastered the process, it will be easy for you to translate your knowledge into your own powerful business applications. Each chapter covers, step by step, a different aspect of deep neural networks. You get your hands dirty as you work through some challenging real world business issues. YOU'LL LEARN HOW TO: Unleash the power of Deep Neural Networks for classifying Insurance Claims. Develop hands on solutions to predict product yield. Design successful applications for modeling customer churn. Master techniques for efficient classification in peer to peer marketplaces. Deploy deep neural networks to predict crash injury severity. Adopt winning solutions to forecast property value. Everything you need to get started is contained within this book. Deep Learning for Business with Python is your very own hands on practical, tactical, easy to follow guide to mastery. Buy this book today, your next big breakthrough using deep neural networks is only a page away!



Deep Learning for Business with R

Deep Learning for Business with R Author N. Lewis
ISBN-10 1537075047
Release 2016-08-31
Pages 254
Download Link Click Here

Master Deep Learning & Leverage Business Analytics - the Easy Way! Deep Learning for Business With R takes you on a gentle, fun and unhurried journey to building your own deep neural network models for business use in R. Using plain language, it offers an intuitive, practical, non-mathematical, easy to follow guide to the most successful ideas, outstanding techniques and usable solutions available using R. BUSINESS ANALYTICS FAST! This book is an ideal introduction to deep learning for business analytics. It is designed to be accessible. It will teach you, in simple and easy-to-understand terms, how to take advantage of deep learning to enhance business outcomes. NO EXPERIENCE REQUIRED I'm assuming you never did like linear algebra, don't want to see things derived, dislike complicated computer code, and you're here because you want to see how to use deep neural networks for business problems explained in plain language, and try them out for yourself. THIS BOOK IS FOR YOU IF YOU WANT: Explanations rather than mathematical derivation Real world applications that make sense. Illustrations to deepen your understanding. Worked examples in R you can easily follow and immediately implement. Ideas you can actually use and try on your own data. QUICK AND EASY: Deep Learning is little more than using straight-forward steps to process data into actionable insight. And in Deep Learning for Business with R, author Dr. N.D Lewis will show you how that's done. It's easier than you think. Through a simple to follow process you will learn how to build deep neural network models for business problems in R. Once you have mastered the process, it will be easy for you to translate your knowledge into your own powerful business applications. TAKE THE SHORTCUT: R is easy to use, available on all major operating systems and free! Each chapter covers, step by step, a different aspect of deep neural networks. You get your hands dirty as you work through some challenging real world business issues. YOU'LL LEARN HOW TO: Unleash the power of Deep Neural Networks for classifying the popularity of online news stories.. Develop hands on solutions for assessing customer churn.. Design successful applications for modeling customer brand choice. Master techniques for efficient product demand forecasting. Deploy deep neural networks to predict credit card expenditure. Adopt winning solutions to forecast the value of automobiles. ACCELERATE YOUR PROGRESS If you want to accelerate your progress and act on what you have learned, this book is the place to get started. It reveals how deep neural networks work, and takes you under the hood with an easy to follow process showing you how to build them faster than you imagined possible using the powerful and free R programming language. Everything you need to get started is contained within this book. Deep Learning for Business With R is your very own hands on practical, tactical, easy to follow guide to mastery Buy this book today your next big breakthrough using deep neural networks is only a page away!



Deep Learning Step by Step with Python

Deep Learning Step by Step with Python Author N. Lewis
ISBN-10 1535410264
Release 2016-07-26
Pages 210
Download Link Click Here

Finally! Deep Neural Networks Simplified with Python Deep Learning Step by Step with Python takes you on a gentle, fun and unhurried journey to building your own deep neural network models in Python. Using plain English, it offers an intuitive, practical, non-mathematical, easy to follow guide to the most successful ideas, outstanding techniques and usable solutions available to the data scientist for deep neural networks using Python. NO EXPERIENCE REQUIRED This book is designed to be accessible - I'm assuming you never did like linear algebra, don't want to see things derived, dislike complicated computer code, and you're here because you want to see deep neural networks explained in plain English, and try them out for yourself. It is so straightforward and easy to follow even your ten year old nephew (who dislikes math) can understand it! THIS BOOK IS FOR YOU IF YOU WANT: Explanations rather than mathematical derivation Real world applications that make sense. Illustrations to deepen your understanding. Worked examples in Python you can easily follow and immediately implement. Ideas you can actually use and try on your own data. QUICK AND EASY: Bestselling Data Scientist Dr. N.D Lewis shows you the shortcut up the steep steps to the very top. It's easier than you think. Through a simple to follow process you will learn how to build deep neural network models with Python. Once you have mastered the process, it will be easy for you to translate your knowledge into your own powerful data science applications. YOU'LL LEARN HOW TO: Unleash the power of Deep Neural Networks for effective forecasting. Develop hands on solutions for binary classification. Design successful applications for multi-class problems. Master techniques for efficient model construction. Fine tune deep networks to boost, accelerate, and transform predictive performance. Build Deep Learning Models Faster! Everything you need to get started is contained within this book. Deep Learning Step by Step with Python is your very own hands on practical, tactical, easy to follow guide to mastery Buy this book today your next big breakthrough using deep neural networks is only a page away!



Deep Learning with Keras

Deep Learning with Keras Author Antonio Gulli
ISBN-10 9781787129030
Release 2017-04-26
Pages 318
Download Link Click Here

Get to grips with the basics of Keras to implement fast and efficient deep-learning models About This Book Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games See how various deep-learning models and practical use-cases can be implemented using Keras A practical, hands-on guide with real-world examples to give you a strong foundation in Keras Who This Book Is For If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book. What You Will Learn Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm Fine-tune a neural network to improve the quality of results Use deep learning for image and audio processing Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases Identify problems for which Recurrent Neural Network (RNN) solutions are suitable Explore the process required to implement Autoencoders Evolve a deep neural network using reinforcement learning In Detail This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of hand written digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GAN). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at Reinforcement Learning and its application to AI game playing, another popular direction of research and application of neural networks. Style and approach This book is an easy-to-follow guide full of examples and real-world applications to help you gain an in-depth understanding of Keras. This book will showcase more than twenty working Deep Neural Networks coded in Python using Keras.



Python Machine Learning

Python Machine Learning Author Sebastian Raschka
ISBN-10 9781783555147
Release 2015-09-23
Pages 454
Download Link Click Here

Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.



Beginning Artificial Intelligence with the Raspberry Pi

Beginning Artificial Intelligence with the Raspberry Pi Author Donald J. Norris
ISBN-10 9781484227435
Release 2017-06-05
Pages 369
Download Link Click Here

Gain a gentle introduction to the world of Artificial Intelligence (AI) using the Raspberry Pi as the computing platform. Most of the major AI topics will be explored, including expert systems, machine learning both shallow and deep, fuzzy logic control, and more! AI in action will be demonstrated using the Python language on the Raspberry Pi. The Prolog language will also be introduced and used to demonstrate fundamental AI concepts. In addition, the Wolfram language will be used as part of the deep machine learning demonstrations. A series of projects will walk you through how to implement AI concepts with the Raspberry Pi. Minimal expense is needed for the projects as only a few sensors and actuators will be required. Beginners and hobbyists can jump right in to creating AI projects with the Raspberry PI using this book. What You'll Learn What AI is and—as importantly—what it is not Inference and expert systems Machine learning both shallow and deep Fuzzy logic and how to apply to an actual control system When AI might be appropriate to include in a system Constraints and limitations of the Raspberry Pi AI implementation Who This Book Is For Hobbyists, makers, engineers involved in designing autonomous systems and wanting to gain an education in fundamental AI concepts, and non-technical readers who want to understand what AI is and how it might affect their lives.



Make Your Own Neural Network

Make Your Own Neural Network Author Tariq Rashid
ISBN-10 1530826608
Release 2016-03-31
Pages 222
Download Link Click Here

A step-by-step gentle journey through the mathematics of neural networks, and making your own using the Python computer language. Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.



Artificial Intelligence for Humans Volume 3

Artificial Intelligence for Humans  Volume 3 Author Jeff Heaton
ISBN-10 1505714346
Release 2015-10-28
Pages 374
Download Link Click Here

Neural networks have been a mainstay of artificial intelligence since its earliest days. Now, exciting new technologies such as deep learning and convolution are taking neural networks in bold new directions. In this book, we will demonstrate the neural networks in a variety of real-world tasks such as image recognition and data science. We examine current neural network technologies, including ReLU activation, stochastic gradient descent, cross-entropy, regularization, dropout, and visualization.



Neural Networks for Time Series Forecasting with R

Neural Networks for Time Series Forecasting with R Author N. Lewis
ISBN-10 1544752954
Release 2017-03-27
Pages 238
Download Link Click Here

Finally, A Blueprint for Neural Network Time Series Forecasting with R! Neural Networks for Time Series Forecasting with R offers a practical tutorial that uses hands-on examples to step through real-world applications using clear and practical case studies. Through this process it takes you on a gentle, fun and unhurried journey to creating neural network models for time series forecasting with R. Whether you are new to data science or a veteran, this book offers a powerful set of tools for quickly and easily gaining insight from your data using R. NO EXPERIENCE REQUIRED: This book uses plain language rather than a ton of equations; I'm assuming you never did like linear algebra, don't want to see things derived, dislike complicated computer code, and you're here because you want to try neural networks for time series forecasting for yourself. YOUR PERSONAL BLUE PRINT: Through a simple to follow step by step process, you will learn how to build neural network time series forecasting models using R. Once you have mastered the process, it will be easy for you to translate your knowledge into your own powerful applications. THIS BOOK IS FOR YOU IF YOU WANT: Explanations rather than mathematical derivation Practical illustrations that use real data. Illustrations to deepen your understanding. Worked examples in R you can easily follow and immediately implement. Ideas you can actually use and try on your own data. TAKE THE SHORTCUT: This guide was written for people just like you. Individuals who want to get up to speed as quickly as possible. In this book you will learn how to: YOU'LL LEARN HOW TO: Unleash the power of Long Short-Term Memory Neural Networks. Develop hands on skills using the Gated Recurrent Unit Neural Network. Design successful applications with Recurrent Neural Networks. Deploy Jordan and Elman Partially Recurrent Neural Networks. Adapt Deep Neural Networks for Time Series Forecasting. Master the General Method of Data Handling Type Neural Networks. For each neural network model, every step in the process is detailed, from preparing the data for analysis, to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks. Using plain language, this book offers a simple, intuitive, practical, non-mathematical, easy to follow guide to the most successful ideas, outstanding techniques and usable solutions available using R. Everything you need to get started is contained within this book. Neural Networks for Time Series Forecasting with R is your very own hands on practical, tactical, easy to follow guide to mastery. Buy this book today and accelerate your progress!



Machine Learning Algorithms

Machine Learning Algorithms Author Giuseppe Bonaccorso
ISBN-10 9781785884511
Release 2017-07-24
Pages 360
Download Link Click Here

Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem. Style and approach An easy-to-follow, step-by-step guide that will help you get to grips with real -world applications of Algorithms for Machine Learning.



How to Create a Mind The Secret of Human Thought Revealed

How to Create a Mind  The Secret of Human Thought Revealed Author Terry Bisson
ISBN-10 9780715645956
Release 2013-02-28
Pages 336
Download Link Click Here

How does the brain recognise images? Could computers drive? How is it possible for man-made programmes to beat the world's best chess players? In this fascinating look into the human mind, Ray Kurzweil relates the advanced brain processes we take for granted in our everyday lives, our sense of self and intellect - and explains how artificial intelligence, once only the province of science fiction, is rapidly catching up. Effortlessly unravelling the complexity of his subject, unfolding such key areas as love, learning and logic, he shows how the building blocks for our future machines exist underneath. Kurzweil examines the radical possibilities of a world in which humans and intelligent machines could live side by side.



TensorFlow For Dummies

TensorFlow For Dummies Author Matthew Scarpino
ISBN-10 9781119466192
Release 2018-03-07
Pages 360
Download Link Click Here

Become a machine learning pro! Google TensorFlow has become the darling of financial firms and research organizations, but the technology can be intimidating and the learning curve is steep. Luckily, TensorFlow For Dummies is here to offer you a friendly, easy-to-follow book on the subject. Inside, you’ll find out how to write applications with TensorFlow, while also grasping the concepts underlying machine learning—all without ever losing your cool! Machine learning has become ubiquitous in modern society, and its applications include language translation, robotics, handwriting analysis, financial prediction, and image recognition. TensorFlow is Google's preeminent toolset for machine learning, and this hands-on guide makes it easy to understand, even for those without a background in artificial intelligence. Install TensorFlow on your computer Learn the fundamentals of statistical regression and neural networks Visualize the machine learning process with TensorBoard Perform image recognition with convolutional neural networks (CNNs) Analyze sequential data with recurrent neural networks (RNNs) Execute TensorFlow on mobile devices and the Google Cloud Platform (GCP) If you’re a manager or software developer looking to use TensorFlow for machine learning, this is the book you’ll want to have close by.



Introduction to Deep Learning Business Applications for Developers

Introduction to Deep Learning Business Applications for Developers Author Armando Vieira
ISBN-10 9781484234532
Release 2018-05-02
Pages 343
Download Link Click Here

Discover the potential applications, challenges, and opportunities of deep learning from a business perspective with technical examples. These applications include image recognition, segmentation and annotation, video processing and annotation, voice recognition, intelligent personal assistants, automated translation, and autonomous vehicles. An Introduction to Deep Learning Business Applications for Developers covers some common DL algorithms such as content-based recommendation algorithms and natural language processing. You’ll explore examples, such as video prediction with fully convolutional neural networks (FCNN) and residual neural networks (ResNets). You will also see applications of DL for controlling robotics, exploring the DeepQ learning algorithm with Monte Carlo Tree search (used to beat humans in the game of Go), and modeling for financial risk assessment. There will also be mention of the powerful set of algorithms called Generative Adversarial Neural networks (GANs) that can be applied for image colorization, image completion, and style transfer. After reading this book you will have an overview of the exciting field of deep neural networks and an understanding of most of the major applications of deep learning. The book contains some coding examples, tricks, and insights on how to train deep learning models using the Keras framework. What You Will Learn Find out about deep learning and why it is so powerful Work with the major algorithms available to train deep learning models See the major breakthroughs in terms of applications of deep learning Run simple examples with a selection of deep learning libraries Discover the areas of impact of deep learning in business Who This Book Is For Data scientists, entrepreneurs, and business developers.



Fundamentals of Deep Learning

Fundamentals of Deep Learning Author Nikhil Buduma
ISBN-10 9781491925560
Release 2017-05-25
Pages 298
Download Link Click Here

With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning



Machine Learning with R

Machine Learning with R Author Brett Lantz
ISBN-10 9781782162155
Release 2013-10-25
Pages 396
Download Link Click Here

Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.



Deep Learning with Python

Deep Learning with Python Author Francois Chollet
ISBN-10 1617294438
Release 2017-10-28
Pages 384
Download Link Click Here

Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher Fran�ois Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning--a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher Fran�ois Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author Fran�ois Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance



Deep Learning

Deep Learning Author Josh Patterson
ISBN-10 9781491914212
Release 2017-07-28
Pages 532
Download Link Click Here

Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learning—especially deep neural networks—make a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks. Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you’ll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J. Dive into machine learning concepts in general, as well as deep learning in particular Understand how deep networks evolved from neural network fundamentals Explore the major deep network architectures, including Convolutional and Recurrent Learn how to map specific deep networks to the right problem Walk through the fundamentals of tuning general neural networks and specific deep network architectures Use vectorization techniques for different data types with DataVec, DL4J’s workflow tool Learn how to use DL4J natively on Spark and Hadoop