Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

 Dependence Modeling with Copulas covers the substantial advances that have taken place in the field during the last 15 years, including vine copula modeling of high-dimensional data. Vine copula models are constructed from a sequence of bivariate copulas. The book develops generalizations of vine copula models, including common and structured factor models that extend from the Gaussian assumption to copulas. It also discusses other multivariate constructions and parametric copula families that have different tail properties and presents extensive material on dependence and tail properties to assist in copula model selection. The author shows how numerical methods and algorithms for inference and simulation are important in high-dimensional copula applications. He presents the algorithms as pseudocode, illustrating their implementation for high-dimensional copula models. He also incorporates results to determine dependence and tail properties of multivariate distributions for future constructions of copula models.

 This book on multivariate models, statistical inference, and data analysis contains deep coverage of multivariate non-normal distributions for modeling of binary, count, ordinal, and extreme value response data. It is virtually self-contained, and includes many exercises and unsolved problems.

 Principles of Copula Theory explores the state of the art on copulas and provides you with the foundation to use copulas in a variety of applications. Throughout the book, historical remarks and further readings highlight active research in the field, including new results, streamlined presentations, and new proofs of old results. After covering the essentials of copula theory, the book addresses the issue of modeling dependence among components of a random vector using copulas. It then presents copulas from the point of view of measure theory, compares methods for the approximation of copulas, and discusses the Markov product for 2-copulas. The authors also examine selected families of copulas that possess appealing features from both theoretical and applied viewpoints. The book concludes with in-depth discussions on two generalizations of copulas: quasi- and semi-copulas. Although copulas are not the solution to all stochastic problems, they are an indispensable tool for understanding several problems about stochastic dependence. This book gives you the solid and formal mathematical background to apply copulas to a range of mathematical areas, such as probability, real analysis, measure theory, and algebraic structures.

 This book is a collaborative effort from three workshops held over the last three years, all involving principal contributors to the vine-copula methodology. Research and applications in vines have been growing rapidly and there is now a growing need to collate basic results, and standardize terminology and methods. Specifically, this handbook will trace historical developments, standardizing notation and terminology, summarize results on bivariate copulae, summarize results for regular vines, and give an overview of its applications. In addition, many of these results are new and not readily available in any existing journals. New research directions are also discussed.

 This book presents contributions and review articles on the theory of copulas and their applications. The authoritative and refereed contributions review the latest findings in the area with emphasis on “classical” topics like distributions with fixed marginals, measures of association, construction of copulas with given additional information, etc. The book celebrates the 75th birthday of Professor Roger B. Nelsen and his outstanding contribution to the development of copula theory. Most of the book’s contributions were presented at the conference “Copulas and Their Applications” held in his honor in Almería, Spain, July 3-5, 2017. The chapter 'When Gumbel met Galambos' is published open access under a CC BY 4.0 license.

 Copulas are functions that join multivariate distribution functions to their one-dimensional margins. The study of copulas and their role in statistics is a new but vigorously growing field. In this book the student or practitioner of statistics and probability will find discussions of the fundamental properties of copulas and some of their primary applications. The applications include the study of dependence and measures of association, and the construction of families of bivariate distributions. With nearly a hundred examples and over 150 exercises, this book is suitable as a text or for self-study. The only prerequisite is an upper level undergraduate course in probability and mathematical statistics, although some familiarity with nonparametric statistics would be useful. Knowledge of measure-theoretic probability is not required. Roger B. Nelsen is Professor of Mathematics at Lewis & Clark College in Portland, Oregon. He is also the author of "Proofs Without Words: Exercises in Visual Thinking," published by the Mathematical Association of America.

 This book introduces the main theoretical findings related to copulas and shows how statistical modeling of multivariate continuous distributions using copulas can be carried out in the R statistical environment with the package copula (among others). Copulas are multivariate distribution functions with standard uniform univariate margins. They are increasingly applied to modeling dependence among random variables in fields such as risk management, actuarial science, insurance, finance, engineering, hydrology, climatology, and meteorology, to name a few. In the spirit of the Use R! series, each chapter combines key theoretical definitions or results with illustrations in R. Aimed at statisticians, actuaries, risk managers, engineers and environmental scientists wanting to learn about the theory and practice of copula modeling using R without an overwhelming amount of mathematics, the book can also be used for teaching a course on copula modeling.

 The first edition of this book (1970) set out a systematic basis for the analysis of binary data and in particular for the study of how the probability of 'success' depends on explanatory variables. The first edition has been widely used and the general level and style have been preserved in the second edition, which contains a substantial amount of new material. This amplifies matters dealt with only cryptically in the first edition and includes many more recent developments. In addition the whole material has been reorganized, in particular to put more emphasis on m.aximum likelihood methods. There are nearly 60 further results and exercises. The main points are illustrated by practical examples, many of them not in the first edition, and some general essential background material is set out in new Appendices.

 Contains Nearly 100 Pages of New Material The recent financial crisis has shown that credit risk in particular and finance in general remain important fields for the application of mathematical concepts to real-life situations. While continuing to focus on common mathematical approaches to model credit portfolios, Introduction to Credit Risk Modeling, Second Edition presents updates on model developments that have occurred since the publication of the best-selling first edition. New to the Second Edition An expanded section on techniques for the generation of loss distributions Introductory sections on new topics, such as spectral risk measures, an axiomatic approach to capital allocation, and nonhomogeneous Markov chains Updated sections on the probability of default, exposure-at-default, loss-given-default, and regulatory capital A new section on multi-period models Recent developments in structured credit The financial crisis illustrated the importance of effectively communicating model outcomes and ensuring that the variation in results is clearly understood by decision makers. The crisis also showed that more modeling and more analysis are superior to only one model. This accessible, self-contained book recommends using a variety of models to shed light on different aspects of the true nature of a credit risk problem, thereby allowing the problem to be viewed from different angles.

 This book offers a unified approach to the study of crises, large fluctuations, dependence and contagion effects in economics and finance. It covers important topics in statistical modeling and estimation, which combine the notions of copulas and heavy tails -- two particularly valuable tools of today's research in economics, finance, econometrics and other fields -- in order to provide a new way of thinking about such vital problems as diversification of risk and propagation of crises through financial markets due to contagion phenomena, among others. The aim is to arm today's economists with a toolbox suited for analyzing multivariate data with many outliers and with arbitrary dependence patterns. The methods and topics discussed and used in the book include, in particular, majorization theory, heavy-tailed distributions and copula functions -- all applied to study robustness of economic, financial and statistical models, and estimation methods to heavy tails and dependence.

 Presents an introduction to Bayesian statistics, presents an emphasis on Bayesian methods (prior and posterior), Bayes estimation, prediction, MCMC,Bayesian regression, and Bayesian analysis of statistical modelsof dependence, and features a focus on copulas for risk management Introduction to Bayesian Estimation and Copula Models of Dependence emphasizes the applications of Bayesian analysis to copula modeling and equips readers with the tools needed to implement the procedures of Bayesian estimation in copula models of dependence. This book is structured in two parts: the first four chapters serve as a general introduction to Bayesian statistics with a clear emphasis on parametric estimation and the following four chapters stress statistical models of dependence with a focus of copulas. A review of the main concepts is discussed along with the basics of Bayesian statistics including prior information and experimental data, prior and posterior distributions, with an emphasis on Bayesian parametric estimation. The basic mathematical background of both Markov chains and Monte Carlo integration and simulation is also provided. The authors discuss statistical models of dependence with a focus on copulas and present a brief survey of pre-copula dependence models. The main definitions and notations of copula models are summarized followed by discussions of real-world cases that address particular risk management problems. In addition, this book includes: • Practical examples of copulas in use including within the Basel Accord II documents that regulate the world banking system as well as examples of Bayesian methods within current FDA recommendations • Step-by-step procedures of multivariate data analysis and copula modeling, allowing readers to gain insight for their own applied research and studies • Separate reference lists within each chapter and end-of-the-chapter exercises within Chapters 2 through 8 • A companion website containing appendices: data files and demo files in Microsoft® Office Excel®, basic code in R, and selected exercise solutions Introduction to Bayesian Estimation and Copula Models of Dependence is a reference and resource for statisticians who need to learn formal Bayesian analysis as well as professionals within analytical and risk management departments of banks and insurance companies who are involved in quantitative analysis and forecasting. This book can also be used as a textbook for upper-undergraduate and graduate-level courses in Bayesian statistics and analysis. ARKADY SHEMYAKIN, PhD, is Professor in the Department of Mathematics and Director of the Statistics Program at the University of St. Thomas. A member of the American Statistical Association and the International Society for Bayesian Analysis, Dr. Shemyakin's research interests include informationtheory, Bayesian methods of parametric estimation, and copula models in actuarial mathematics, finance, and engineering. ALEXANDER KNIAZEV, PhD, is Associate Professor and Head of the Department of Mathematics at Astrakhan State University in Russia. Dr. Kniazev's research interests include representation theory of Lie algebras and finite groups, mathematical statistics, econometrics, and financial mathematics.

 Portfolio theory and much of asset pricing, as well as many empirical applications, depend on the use of multivariate probability distributions to describe asset returns. Traditionally, this has meant the multivariate normal (or Gaussian) distribution. More recently, theoretical and empirical work in financial economics has employed the multivariate Student (and other) distributions which are members of the elliptically symmetric class. There is also a growing body of work which is based on skew-elliptical distributions. These probability models all exhibit the property that the marginal distributions differ only by location and scale parameters or are restrictive in other respects. Very often, such models are not supported by the empirical evidence that the marginal distributions of asset returns can differ markedly. Copula theory is a branch of statistics which provides powerful methods to overcome these shortcomings. This book provides a synthesis of the latest research in the area of copulae as applied to finance and related subjects such as insurance. Multivariate non-Gaussian dependence is a fact of life for many problems in financial econometrics. This book describes the state of the art in tools required to deal with these observed features of financial data. This book was originally published as a special issue of the European Journal of Finance.

 While many financial engineering books are available, the statistical aspects behind the implementation of stochastic models used in the field are often overlooked or restricted to a few well-known cases. Statistical Methods for Financial Engineering guides current and future practitioners on implementing the most useful stochastic models used in financial engineering. After introducing properties of univariate and multivariate models for asset dynamics as well as estimation techniques, the book discusses limits of the Black-Scholes model, statistical tests to verify some of its assumptions, and the challenges of dynamic hedging in discrete time. It then covers the estimation of risk and performance measures, the foundations of spot interest rate modeling, Lévy processes and their financial applications, the properties and parameter estimation of GARCH models, and the importance of dependence models in hedge fund replication and other applications. It concludes with the topic of filtering and its financial applications. This self-contained book offers a basic presentation of stochastic models and addresses issues related to their implementation in the financial industry. Each chapter introduces powerful and practical statistical tools necessary to implement the models. The author not only shows how to estimate parameters efficiently, but he also demonstrates, whenever possible, how to test the validity of the proposed models. Throughout the text, examples using MATLAB® illustrate the application of the techniques to solve real-world financial problems. MATLAB and R programs are available on the author’s website.

 Extreme Value Modeling and Risk Analysis: Methods and Applications presents a broad overview of statistical modeling of extreme events along with the most recent methodologies and various applications. The book brings together background material and advanced topics, eliminating the need to sort through the massive amount of literature on the subject. After reviewing univariate extreme value analysis and multivariate extremes, the book explains univariate extreme value mixture modeling, threshold selection in extreme value analysis, and threshold modeling of non-stationary extremes. It presents new results for block-maxima of vine copulas, develops time series of extremes with applications from climatology, describes max-autoregressive and moving maxima models for extremes, and discusses spatial extremes and max-stable processes. The book then covers simulation and conditional simulation of max-stable processes; inference methodologies, such as composite likelihood, Bayesian inference, and approximate Bayesian computation; and inferences about extreme quantiles and extreme dependence. It also explores novel applications of extreme value modeling, including financial investments, insurance and financial risk management, weather and climate disasters, clinical trials, and sports statistics. Risk analyses related to extreme events require the combined expertise of statisticians and domain experts in climatology, hydrology, finance, insurance, sports, and other fields. This book connects statistical/mathematical research with critical decision and risk assessment/management applications to stimulate more collaboration between these statisticians and specialists.

 Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studies and, online, a c-library for fast and exact simulation. With chapters contributed by leading researchers in the field, this volume is essential reading for statisticians working in spatial theory and its applications, as well as quantitative researchers in a wide range of science fields where spatial data analysis is important.

 Coastal structures are an important component in any coastal protection scheme. They directly control wave and storm surge action or to stabilize a beach which provides protection to the coast.This book provides the most up-to-date technical advances on the design and construction of coastal structures and sea defenses.Written by renowned practicing coastal engineers, this edited volume focuses on the latest technology applied in planning, design and construction, effective engineering methodology, unique projects and problems, design and construction challenges, and other lesions learned.Many books have been written about the theoretical treatment of coastal and ocean structures. Much less has been written about the practical practice aspect of ocean structures and sea defenses. This comprehensive book fills the gap. It is an essential source of reference for professionals and researchers in the areas of coastal, ocean, civil, and geotechnical engineering.