**Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.**

Author | Gerardo F. Torres del Castillo | |

ISBN-10 | 0817682716 | |

Release | 2011-10-09 | |

Pages | 275 | |

Download Link | Click Here |

This textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers interested in a theoretical physics approach to the subject. Prerequisites include multivariable calculus, linear algebra, and differential equations and a basic knowledge of analytical mechanics. |

Author | Paul Baillon | |

ISBN-10 | 9789814449588 | |

Release | 2013-11-22 | |

Pages | 592 | |

Download Link | Click Here |

Differential Manifold is the framework of particle physics and astrophysics nowadays. It is important for all research physicists to be well accustomed to it and even experimental physicists should be able to manipulate equations and expressions in that framework. This book gives a comprehensive description of the basics of differential manifold with a full proof of any element. A large part of the book is devoted to the basic mathematical concepts in which all necessary for the development of the differential manifold is expounded and fully proved. This book is self-consistent: it starts from first principles. The mathematical framework is the set theory with its axioms and its formal logic. No special knowledge is needed. |

Author | ||

ISBN-10 | 0080874355 | |

Release | 1985-05-24 | |

Pages | 393 | |

Download Link | Click Here |

Differential Manifolds and Theoretical Physics |

Author | Bernard F. Schutz | |

ISBN-10 | 9781107268142 | |

Release | 1980-01-28 | |

Pages | ||

Download Link | Click Here |

In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions. |

Author | Gerd Rudolph | |

ISBN-10 | 9789400753457 | |

Release | 2012-11-09 | |

Pages | 762 | |

Download Link | Click Here |

Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact. |

Author | Pedro M. Gadea | |

ISBN-10 | 9789400759527 | |

Release | 2012-12-30 | |

Pages | 618 | |

Download Link | Click Here |

This is the second edition of this best selling problem book for students, now containing over 400 completely solved exercises on differentiable manifolds, Lie theory, fibre bundles and Riemannian manifolds. The exercises go from elementary computations to rather sophisticated tools. Many of the definitions and theorems used throughout are explained in the first section of each chapter where they appear. A 56-page collection of formulae is included which can be useful as an aide-mémoire, even for teachers and researchers on those topics. In this 2nd edition: • 76 new problems • a section devoted to a generalization of Gauss’ Lemma • a short novel section dealing with some properties of the energy of Hopf vector fields • an expanded collection of formulae and tables • an extended bibliography Audience This book will be useful to advanced undergraduate and graduate students of mathematics, theoretical physics and some branches of engineering with a rudimentary knowledge of linear and multilinear algebra. |

Author | Bo-Yu Hou | |

ISBN-10 | 9789813105096 | |

Release | 1997-10-31 | |

Pages | 560 | |

Download Link | Click Here |

This book is divided into fourteen chapters, with 18 appendices as introduction to prerequisite topological and algebraic knowledge, etc. The first seven chapters focus on local analysis. This part can be used as a fundamental textbook for graduate students of theoretical physics. Chapters 8–10 discuss geometry on fibre bundles, which facilitates further reference for researchers. The last four chapters deal with the Atiyah-Singer index theorem, its generalization and its application, quantum anomaly, cohomology field theory and noncommutative geometry, giving the reader a glimpse of the frontier of current research in theoretical physics. |

Author | ||

ISBN-10 | 0080875246 | |

Release | 2009-06-17 | |

Pages | 484 | |

Download Link | Click Here |

Differential Forms in Mathematical Physics |

Author | Lawrence Conlon | |

ISBN-10 | 9781475722840 | |

Release | 2013-04-17 | |

Pages | 395 | |

Download Link | Click Here |

This book is based on the full year Ph.D. qualifying course on differentiable manifolds, global calculus, differential geometry, and related topics, given by the author at Washington University several times over a twenty year period. It is addressed primarily to second year graduate students and well prepared first year students. Presupposed is a good grounding in general topology and modern algebra, especially linear algebra and the analogous theory of modules over a commutative, unitary ring. Although billed as a "first course" , the book is not intended to be an overly sketchy introduction. Mastery of this material should prepare the student for advanced topics courses and seminars in differen tial topology and geometry. There are certain basic themes of which the reader should be aware. The first concerns the role of differentiation as a process of linear approximation of non linear problems. The well understood methods of linear algebra are then applied to the resulting linear problem and, where possible, the results are reinterpreted in terms of the original nonlinear problem. The process of solving differential equations (i. e., integration) is the reverse of differentiation. It reassembles an infinite array of linear approximations, result ing from differentiation, into the original nonlinear data. This is the principal tool for the reinterpretation of the linear algebra results referred to above. |

Author | Daniel Martin | |

ISBN-10 | 1898563845 | |

Release | 2002-01-01 | |

Pages | 423 | |

Download Link | Click Here |

A comprehensive account of basic manifold theory for post graduate students. Contains more than 130 exercises, with helpful hints and solutions and introduces the basic theory of differential geometry to students in theoretical physics and mathematics. |

Author | Steinar Johannesen | |

ISBN-10 | 9781315342627 | |

Release | 2016-12-08 | |

Pages | 651 | |

Download Link | Click Here |

This book provides a systematic presentation of the mathematical foundation of modern physics with applications particularly within classical mechanics and the theory of relativity. Written to be self-contained, Smooth Manifolds and Fibre Bundles with Applications to Theoretical Physics provides complete and rigorous proofs of all the results presented within. Among the themes illustrated in the book are differentiable manifolds, differential forms, fiber bundles and differential geometry with non-trivial applications especially within the general theory of relativity. The emphasis is upon a systematic and logical construction of the mathematical foundations. It can be used as a textbook for a pure mathematics course in differential geometry, assuming the reader has a good understanding of basic analysis, linear algebra and point set topology. The book will also appeal to students of theoretical physics interested in the mathematical foundation of the theories. |

Author | Sunil Mukhi | |

ISBN-10 | 9789814299749 | |

Release | 2010 | |

Pages | 288 | |

Download Link | Click Here |

Part I provides a simple introduction to basic topology, followed by a survey of homotopy. Calculus of differentiable manifolds is then developed, and a Riemannian metric is introduced along with the key concepts of connections and curvature. The final chapters lay out the basic notions of simplicial homology and de Rham cohomology as well as fibre bundles, particularly tangent and cotangent bundles. |

Author | Charles Nash | |

ISBN-10 | 9780486318363 | |

Release | 2013-08-16 | |

Pages | 320 | |

Download Link | Click Here |

Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. "Thoroughly recommended" by The Physics Bulletin, this volume's physics applications range from condensed matter physics and statistical mechanics to elementary particle theory. Its main mathematical topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. |

Author | H.C. Lee | |

ISBN-10 | 9781461538028 | |

Release | 2012-12-06 | |

Pages | 681 | |

Download Link | Click Here |

The Banff NATO Summer School was held August 14-25, 1989 at the Banff Cen tre, Banff, Albert, Canada. It was a combination of two venues: a summer school in the annual series of Summer School in Theoretical Physics spon sored by the Theoretical Physics Division, Canadian Association of Physi cists, and a NATO Advanced Study Institute. The Organizing Committee for the present school was composed of G. Kunstatter (University of Winnipeg), H.C. Lee (Chalk River Laboratories and University of Western Ontario), R. Kobes (University of Winnipeg), D.l. Toms (University of Newcastle Upon Tyne) and Y.S. Wu (University of Utah). Thanks to the group of lecturers (see Contents) and the timeliness of the courses given, the school, entitled PHYSICS, GEOMETRY AND TOPOLOGY, was popular from the very outset. The number of applications outstripped the 90 places of accommodation reserved at the Banff Centre soon after the school was announced. As the eventual total number of participants was increased to 170, it was still necessary to tum away many deserving applicants. In accordance with the spirit of the school, the geometrical and topologi cal properties in each of the wide ranging topics covered by the lectures were emphasized. A recurring theme in a number of the lectures is the Yang-Baxter relation which characterizes a very large class of integrable systems including: many state models, two-dimensional conformal field theory, quantum field theory and quantum gravity in 2 + I dimensions. |

Author | Richard L. Bishop | |

ISBN-10 | 9780486139234 | |

Release | 2012-04-26 | |

Pages | 288 | |

Download Link | Click Here |

DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div |

Author | Jacques Lafontaine | |

ISBN-10 | 9783319207353 | |

Release | 2015-07-29 | |

Pages | 395 | |

Download Link | Click Here |

This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more sophisticated topics such as de Rham cohomology, degree theory and the Gauss-Bonnet theorem for surfaces. Its ambition is to give solid foundations. In particular, the introduction of “abstract” notions such as manifolds or differential forms is motivated via questions and examples from mathematics or theoretical physics. More than 150 exercises, some of them easy and classical, some others more sophisticated, will help the beginner as well as the more expert reader. Solutions are provided for most of them. The book should be of interest to various readers: undergraduate and graduate students for a first contact to differential manifolds, mathematicians from other fields and physicists who wish to acquire some feeling about this beautiful theory. The original French text Introduction aux variétés différentielles has been a best-seller in its category in France for many years. Jacques Lafontaine was successively assistant Professor at Paris Diderot University and Professor at the University of Montpellier, where he is presently emeritus. His main research interests are Riemannian and pseudo-Riemannian geometry, including some aspects of mathematical relativity. Besides his personal research articles, he was involved in several textbooks and research monographs. |

Author | Clifford Henry Taubes | |

ISBN-10 | 9780199605880 | |

Release | 2011-10-13 | |

Pages | 298 | |

Download Link | Click Here |

Bundles, connections, metrics and curvature are the lingua franca of modern differential geometry and theoretical physics. Supplying graduate students in mathematics or theoretical physics with the fundamentals of these objects, this book would suit a one-semester course on the subject of bundles and the associated geometry. |