Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Differential Equations with MATLAB

Differential Equations with MATLAB Author Mark McKibben
ISBN-10 9781466557086
Release 2014-09-08
Pages 497
Download Link Click Here

A unique textbook for an undergraduate course on mathematical modeling, Differential Equations with MATLAB: Exploration, Applications, and Theory provides students with an understanding of the practical and theoretical aspects of mathematical models involving ordinary and partial differential equations (ODEs and PDEs). The text presents a unifying picture inherent to the study and analysis of more than 20 distinct models spanning disciplines such as physics, engineering, and finance. The first part of the book presents systems of linear ODEs. The text develops mathematical models from ten disparate fields, including pharmacokinetics, chemistry, classical mechanics, neural networks, physiology, and electrical circuits. Focusing on linear PDEs, the second part covers PDEs that arise in the mathematical modeling of phenomena in ten other areas, including heat conduction, wave propagation, fluid flow through fissured rocks, pattern formation, and financial mathematics. The authors engage students by posing questions of all types throughout, including verifying details, proving conjectures of actual results, analyzing broad strokes that occur within the development of the theory, and applying the theory to specific models. The authors’ accessible style encourages students to actively work through the material and answer these questions. In addition, the extensive use of MATLAB® GUIs allows students to discover patterns and make conjectures.



Numerical Linear Algebra with Applications

Numerical Linear Algebra with Applications Author William Ford
ISBN-10 9780123947840
Release 2014-09-14
Pages 628
Download Link Click Here

Numerical Linear Algebra with Applications is designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, using MATLAB as the vehicle for computation. The book contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. The text consists of six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra. It explains in great detail the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra. In addition to examples from engineering and science applications, proofs of required results are provided without leaving out critical details. The Preface suggests ways in which the book can be used with or without an intensive study of proofs. This book will be a useful reference for graduate or advanced undergraduate students in engineering, science, and mathematics. It will also appeal to professionals in engineering and science, such as practicing engineers who want to see how numerical linear algebra problems can be solved using a programming language such as MATLAB, MAPLE, or Mathematica. Six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra Detailed explanations and examples A through discussion of the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra Examples from engineering and science applications



Introduction to Numerical and Analytical Methods with MATLAB for Engineers and Scientists

Introduction to Numerical and Analytical Methods with MATLAB   for Engineers and Scientists Author William Bober
ISBN-10 9781466576094
Release 2013-11-12
Pages 556
Download Link Click Here

Introduction to Numerical and Analytical Methods with MATLAB® for Engineers and Scientists provides the basic concepts of programming in MATLAB for engineering applications. • Teaches engineering students how to write computer programs on the MATLAB platform • Examines the selection and use of numerical and analytical methods through examples and case studies • Demonstrates mathematical concepts that can be used to help solve engineering problems, including matrices, roots of equations, integration, ordinary differential equations, curve fitting, algebraic linear equations, and more The text covers useful numerical methods, including interpolation, Simpson’s rule on integration, the Gauss elimination method for solving systems of linear algebraic equations, the Runge-Kutta method for solving ordinary differential equations, and the search method in combination with the bisection method for obtaining the roots of transcendental and polynomial equations. It also highlights MATLAB’s built-in functions. These include interp1 function, the quad and dblquad functions, the inv function, the ode45 function, the fzero function, and many others. The second half of the text covers more advanced topics, including the iteration method for solving pipe flow problems, the Hardy-Cross method for solving flow rates in a pipe network, separation of variables for solving partial differential equations, and the use of Laplace transforms to solve both ordinary and partial differential equations. This book serves as a textbook for a first course in numerical methods using MATLAB to solve problems in mechanical, civil, aeronautical, and electrical engineering. It can also be used as a textbook or as a reference book in higher level courses.



An Introduction to Optimal Control Problems in Life Sciences and Economics

An Introduction to Optimal Control Problems in Life Sciences and Economics Author Sebastian Aniţa
ISBN-10 0817680985
Release 2011-05-05
Pages 232
Download Link Click Here

Combining control theory and modeling, this textbook introduces and builds on methods for simulating and tackling concrete problems in a variety of applied sciences. Emphasizing "learning by doing," the authors focus on examples and applications to real-world problems. An elementary presentation of advanced concepts, proofs to introduce new ideas, and carefully presented MATLAB® programs help foster an understanding of the basics, but also lead the way to new, independent research. With minimal prerequisites and exercises in each chapter, this work serves as an excellent textbook and reference for graduate and advanced undergraduate students, researchers, and practitioners in mathematics, physics, engineering, computer science, as well as biology, biotechnology, economics, and finance.



A First Course in Applied Mathematics

A First Course in Applied Mathematics Author Jorge Rebaza
ISBN-10 9781118229620
Release 2012-04-17
Pages 439
Download Link Click Here

Explore real–world applications of selected mathematical theory, concepts, and methods Exploring related methods that can be utilized in various fields of practice from science and engineering to business, A First Course in Applied Mathematics details how applied mathematics involves predictions, interpretations, analysis, and mathematical modeling to solve real–world problems. Written at a level that is accessible to readers from a wide range of scientific and engineering fields, the book masterfully blends standard topics with modern areas of application and provides the needed foundation for transitioning to more advanced subjects. The author utilizes MATLAB® to showcase the presented theory and illustrate interesting real–world applications to Google′s web page ranking algorithm, image compression, cryptography, chaos, and waste management systems. Additional topics covered include: Linear algebra Ranking web pages Matrix factorizations Least squares Image compression Ordinary differential equations Dynamical systems Mathematical models Throughout the book, theoretical and applications–oriented problems and exercises allow readers to test their comprehension of the presented material. An accompanying website features related MATLAB® code and additional resources. A First Course in Applied Mathematics is an ideal book for mathematics, computer science, and engineering courses at the upper–undergraduate level. The book also serves as a valuable reference for practitioners working with mathematical modeling, computational methods, and the applications of mathematics in their everyday work.



Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB

Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB Author Alexander Stanoyevitch
ISBN-10 9781118031506
Release 2011-10-14
Pages 832
Download Link Click Here

Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB has been writing in one form or another for most of life. You can find so many inspiration from Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB book for free.



Mathematical Explorations with MATLAB

Mathematical Explorations with MATLAB Author K. Chen
ISBN-10 0521639204
Release 1999-04-15
Pages 306
Download Link Click Here

This book is about the kind of mathematics usually encountered in first year university courses. A key feature of the book is that this mathematics is explored in depth using the popular and powerful package Matlab. The emphasis is on understanding and investigating the mathematics, and putting it into practice in a wide variety of modelling situations. In the process, the reader will gain some fluency with Matlab, no starting knowledge of the package being assumed.



A Bridge to Higher Mathematics

A Bridge to Higher Mathematics Author Valentin Deaconu
ISBN-10 9781498775267
Release 2016-12-19
Pages 218
Download Link Click Here

A Bridge to Higher Mathematics is more than simply another book to aid the transition to advanced mathematics. The authors intend to assist students in developing a deeper understanding of mathematics and mathematical thought. The only way to understand mathematics is by doing mathematics. The reader will learn the language of axioms and theorems and will write convincing and cogent proofs using quantifiers. Students will solve many puzzles and encounter some mysteries and challenging problems. The emphasis is on proof. To progress towards mathematical maturity, it is necessary to be trained in two aspects: the ability to read and understand a proof and the ability to write a proof. The journey begins with elements of logic and techniques of proof, then with elementary set theory, relations and functions. Peano axioms for positive integers and for natural numbers follow, in particular mathematical and other forms of induction. Next is the construction of integers including some elementary number theory. The notions of finite and infinite sets, cardinality of counting techniques and combinatorics illustrate more techniques of proof. For more advanced readers, the text concludes with sets of rational numbers, the set of reals and the set of complex numbers. Topics, like Zorn’s lemma and the axiom of choice are included. More challenging problems are marked with a star. All these materials are optional, depending on the instructor and the goals of the course.



Decomposition Methods for Differential Equations

Decomposition Methods for Differential Equations Author Juergen Geiser
ISBN-10 1439810974
Release 2009-05-20
Pages 304
Download Link Click Here

Decomposition Methods for Differential Equations: Theory and Applications describes the analysis of numerical methods for evolution equations based on temporal and spatial decomposition methods. It covers real-life problems, the underlying decomposition and discretization, the stability and consistency analysis of the decomposition methods, and numerical results. The book focuses on the modeling of selected multi-physics problems, before introducing decomposition analysis. It presents time and space discretization, temporal decomposition, and the combination of time and spatial decomposition methods for parabolic and hyperbolic equations. The author then applies these methods to numerical problems, including test examples and real-world problems in physical and engineering applications. For the computational results, he uses various software tools, such as MATLAB®, R3T, WIAS-HiTNIHS, and OPERA-SPLITT. Exploring iterative operator-splitting methods, this book shows how to use higher-order discretization methods to solve differential equations. It discusses decomposition methods and their effectiveness, combination possibility with discretization methods, multi-scaling possibilities, and stability to initial and boundary values problems.



Differential Equations with Applications and Historical Notes Third Edition

Differential Equations with Applications and Historical Notes  Third Edition Author George F. Simmons
ISBN-10 9781498702621
Release 2016-11-17
Pages 764
Download Link Click Here

Fads are as common in mathematics as in any other human activity, and it is always difficult to separate the enduring from the ephemeral in the achievements of one’s own time. An unfortunate effect of the predominance of fads is that if a student doesn’t learn about such worthwhile topics as the wave equation, Gauss’s hypergeometric function, the gamma function, and the basic problems of the calculus of variations—among others—as an undergraduate, then he/she is unlikely to do so later. The natural place for an informal acquaintance with such ideas is a leisurely introductory course on differential equations. Specially designed for just such a course, Differential Equations with Applications and Historical Notes takes great pleasure in the journey into the world of differential equations and their wide range of applications. The author—a highly respected educator—advocates a careful approach, using explicit explanation to ensure students fully comprehend the subject matter. With an emphasis on modeling and applications, the long-awaited Third Edition of this classic textbook presents a substantial new section on Gauss’s bell curve and improves coverage of Fourier analysis, numerical methods, and linear algebra. Relating the development of mathematics to human activity—i.e., identifying why and how mathematics is used—the text includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout. A solutions manual is available upon qualifying course adoption. Provides an ideal text for a one- or two-semester introductory course on differential equations Emphasizes modeling and applications Presents a substantial new section on Gauss’s bell curve Improves coverage of Fourier analysis, numerical methods, and linear algebra Relates the development of mathematics to human activity—i.e., identifying why and how mathematics is used Includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout Uses explicit explanation to ensure students fully comprehend the subject matter Solutions manual available upon qualifying course adoption



Differential Equations

Differential Equations Author P. Mohana Shankar
ISBN-10 9781351385749
Release 2018-04-17
Pages 448
Download Link Click Here

The book takes a problem solving approach in presenting the topic of differential equations. It provides a complete narrative of differential equations showing the theoretical aspects of the problem (the how's and why's), various steps in arriving at solutions, multiple ways of obtaining solutions and comparison of solutions. A large number of comprehensive examples are provided to show depth and breadth and these are presented in a manner very similar to the instructor's class room work. The examples contain solutions from Laplace transform based approaches alongside the solutions based on eigenvalues and eigenvectors and characteristic equations. The verification of the results in examples is additionally provided using Runge-Kutta offering a holistic means to interpret and understand the solutions. Wherever necessary, phase plots are provided to support the analytical results. All the examples are worked out using MATLAB® taking advantage of the Symbolic Toolbox and LaTex for displaying equations. With the subject matter being presented through these descriptive examples, students will find it easy to grasp the concepts. A large number of exercises have been provided in each chapter to allow instructors and students to explore various aspects of differential equations.



Sports Math

Sports Math Author Roland B. Minton
ISBN-10 9781498706292
Release 2016-11-03
Pages 278
Download Link Click Here

Can you really keep your eye on the ball? How is massive data collection changing sports? Sports science courses are growing in popularity. The author’s course at Roanoke College is a mix of physics, physiology, mathematics, and statistics. Many students of both genders find it exciting to think about sports. Sports problems are easy to create and state, even for students who do not live sports 24/7. Sports are part of their culture and knowledge base, and the opportunity to be an expert on some area of sports is invigorating. This should be the primary reason for the growth of mathematics of sports courses: the topic provides intrinsic motivation for students to do their best work. From the Author: "The topics covered in Sports Science and Sports Analytics courses vary widely. To use a golfing analogy, writing a book like this is like hitting a drive at a driving range; there are many directions you can go without going out of bounds. At the driving range, I pick out a small target to focus on, and that is what I have done here. I have chosen a sample of topics I find very interesting. Ideally, users of this book will have enough to choose from to suit whichever version of a sports course is being run." "The book is very appealing to teach from as well as to learn from. Students seem to have a growing interest in ways to apply traditionally different areas to solve problems. This, coupled with an enthusiasm for sports, makes Dr. Minton’s book appealing to me."—Kevin Hutson, Furman University Features Provides an introduction to several topics within the field of sports analytics Contains numerous sports examples showing how things actually work Includes concrete examples of how Moneyball ideas actually work Covers sports illusions (can you really "keep your eye on the ball") in a unique way Discusses many of the concepts, terms, and metrics that are new to sports



Exploring Geometry Second Edition

Exploring Geometry  Second Edition Author Michael Hvidsten
ISBN-10 9781498760829
Release 2016-12-08
Pages 558
Download Link Click Here

This text promotes student engagement with the beautiful ideas of geometry. Every major concept is introduced in its historical context and connects the idea with real-life. A system of experimentation followed by rigorous explanation and proof is central. Exploratory projects play an integral role in this text. Students develop a better sense of how to prove a result and visualize connections between statements, making these connections real. They develop the intuition needed to conjecture a theorem and devise a proof of what they have observed.



Exploring the Infinite

Exploring the Infinite Author Jennifer Brooks
ISBN-10 9781498704502
Release 2016-11-30
Pages 300
Download Link Click Here

Exploring the Infinite addresses the trend toward a combined transition course and introduction to analysis course. It guides the reader through the processes of abstraction and log- ical argumentation, to make the transition from student of mathematics to practitioner of mathematics. This requires more than knowledge of the definitions of mathematical structures, elementary logic, and standard proof techniques. The student focused on only these will develop little more than the ability to identify a number of proof templates and to apply them in predictable ways to standard problems. This book aims to do something more; it aims to help readers learn to explore mathematical situations, to make conjectures, and only then to apply methods of proof. Practitioners of mathematics must do all of these things. The chapters of this text are divided into two parts. Part I serves as an introduction to proof and abstract mathematics and aims to prepare the reader for advanced course work in all areas of mathematics. It thus includes all the standard material from a transition to proof" course. Part II constitutes an introduction to the basic concepts of analysis, including limits of sequences of real numbers and of functions, infinite series, the structure of the real line, and continuous functions. ? Features Two part text for the combined transition and analysis course New approach focuses on exploration and creative thought Emphasizes the limit and sequences Introduces programming skills to explore concepts in analysis Emphasis in on developing mathematical thought Exploration problems expand more traditional exercise sets



Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations Author Kendall Atkinson
ISBN-10 9781118164525
Release 2011-10-24
Pages 272
Download Link Click Here

A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.



A MatLab Companion to Complex Variables

A MatLab   Companion to Complex Variables Author A. David Wunsch
ISBN-10 9781498755689
Release 2016-04-27
Pages 344
Download Link Click Here

This book is intended for someone learning functions of a complex variable and who enjoys using MATLAB. It will enhance the exprience of learning complex variable theory and will strengthen the knowledge of someone already trained in ths branch of advanced calculus. ABET, the accrediting board for engineering programs, makes it clear that engineering graduates must be skilled in the art of programming in a language such as MATLAB®. Supplying students with a bridge between the functions of complex variable theory and MATLAB, this supplemental text enables instructors to easily add a MATLAB component to their complex variables courses. A MATLAB® Companion to Complex Variables provides readers with a clear understanding of the utility of MATLAB in complex variable calculus. An ideal adjunct to standard texts on the functions of complex variables, the book allows professors to quickly find and assign MATLAB programming problems that will strengthen students’ knowledge of the language and concepts of complex variable theory. The book shows students how MATLAB can be a powerful learning aid in such staples of complex variable theory as conformal mapping, infinite series, contour integration, and Laplace and Fourier transforms. In addition to MATLAB programming problems, the text includes many examples in each chapter along with MATLAB code. Fractals, the most recent interesting topic involving complex variables, demands to be treated with a language such as MATLAB. This book concludes with a Coda, which is devoted entirely to this visually intriguing subject. MATLAB is not without constraints, limitations, irritations, and quirks, and there are subtleties involved in performing the calculus of complex variable theory with this language. Without knowledge of these subtleties, engineers or scientists attempting to use MATLAB for solutions of practical problems in complex variable theory suffer the risk of making major mistakes. This book serves as an early warning system about these pitfalls.



Exploring ODEs

Exploring ODEs Author Lloyd N. Trefethen
ISBN-10 9781611975161
Release 2017-12-21
Pages 335
Download Link Click Here

Exploring ODEs is a textbook of ordinary differential equations for advanced undergraduates, graduate students, scientists, and engineers. It is unlike other books in this field in that each concept is illustrated numerically via a few lines of Chebfun code. There are about 400 computer-generated figures in all, and Appendix B presents 100 more examples as templates for further exploration.