Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Differential Topology

Differential Topology Author Victor Guillemin
ISBN-10 9780821851937
Release 2010
Pages 222
Download Link Click Here

Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincaré-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance. The book is suitable for either an introductory graduate course or an advanced undergraduate course.



Lectures on Differential Geometry

Lectures on Differential Geometry Author Shlomo Sternberg
ISBN-10 9780821813850
Release 1999
Pages 442
Download Link Click Here

This book is based on lectures given at Harvard University during the academic year 1960-1961. The presentation assumes knowledge of the elements of modern algebra (groups, vector spaces, etc.) and point-set topology and some elementary analysis. Rather than giving all the basic information or touching upon every topic in the field, this work treats various selected topics in differential geometry. The author concisely addresses standard material and spreads exercises throughout the text. His reprint has two additions to the original volume: a paper written jointly with V. Guillemin at the beginning of a period of intense interest in the equivalence problem and a short description from the author on results in the field that occurred between the first and the second printings.



Geometry of Manifolds

Geometry of Manifolds Author Richard L. Bishop
ISBN-10 9780821829233
Release 1964
Pages 273
Download Link Click Here

First published in 1964, this book served as a text on differential geometry to several generations of graduate students all over the world. The first half of the book (Chapters 1-6) presents basics of the theory of manifolds, vector bundles, differential forms, and Lie groups, with a special emphasis on the theory of linear and affine connections. The second half of the book (Chapters 7-11) is devoted to Riemannian geometry. Following the definition and main properties of Riemannian manifolds, the authors discuss the theory of geodesics, complete Riemannian manifolds, and curvature. Next, they introduce the theory of immersion of manifolds and the second fundamental form. The concluding Chapter 11 contains more complicated results on which much of the research in Riemannian geometry is based: the Morse index theorem, Synge's theorem on closed geodesics, Rauch's comparision theorem, and Bishop's volume-comparision theorem. Clear, concise writing as well as many exercises and examples make this classic an excellent text for a first-year graduate course on differential geometry.



3 manifolds

3 manifolds Author John Hempel
ISBN-10 9780821836958
Release 2004-11-02
Pages 195
Download Link Click Here

A careful and systematic development of the theory of the topology of 3-manifolds, focusing on the critical role of the fundamental group in determining the topological structure of a 3-manifold ... self-contained ... one can learn the subject from it ... would be very appropriate as a text for an advanced graduate course or as a basis for a working seminar. --Mathematical Reviews For many years, John Hempel's book has been a standard text on the topology of 3-manifolds. Even though the field has grown tremendously, the book remains one of the best and most popular introductions to the subject. The theme of this book is the role of the fundamental group in determining the topology of a given 3-manifold. The essential ideas and techniques are covered in the first part of the book: Heegaard splittings, connected sums, the loop and sphere theorems, incompressible surfaces, free groups, and so on. Along the way, many useful and insightful results are proved, usually in full detail. Later chapters address more advanced topics, including Waldhausen's theorem on a class of 3-manifolds that is completely determined by its fundamental group. The book concludes with a list of problems that were unsolved at the time of publication. Hempel's book remains an ideal text to learn about the world of 3-manifolds. The prerequisites are few and are typical of a beginning graduate student. Exercises occur throughout the text.



Complex Manifolds

Complex Manifolds Author James A. Morrow
ISBN-10 9780821840559
Release 1971
Pages 194
Download Link Click Here

This volume serves as an introduction to the Kodaira-Spencer theory of deformations of complex structures. Based on notes taken by James Morrow from lectures given by Kunihiko Kodaira at Stanford University in 1965-1966, the book gives the original proof of the Kodaira embedding theorem, showing that the restricted class of Kahler manifolds called Hodge manifolds is algebraic. Included are the semicontinuity theorems and the local completeness theorem of Kuranishi. Readers are assumed to know some algebraic topology. Complete references are given for the results that are used from elliptic partial differential equations. The book is suitable for graduate students and researchers interested in abstract complex manifolds.



Topology from the Differentiable Viewpoint

Topology from the Differentiable Viewpoint Author John Willard Milnor
ISBN-10 0691048339
Release 1997
Pages 64
Download Link Click Here

This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.



Elementary Differential Topology AM 54

Elementary Differential Topology   AM 54 Author James R. Munkres
ISBN-10 9781400882656
Release 2016-03-02
Pages 112
Download Link Click Here

The description for this book, Elementary Differential Topology. (AM-54), Volume 54, will be forthcoming.



Differential Topology

Differential Topology Author Morris W. Hirsch
ISBN-10 9781468494495
Release 2012-12-06
Pages 222
Download Link Click Here

"A very valuable book. In little over 200 pages, it presents a well-organized and surprisingly comprehensive treatment of most of the basic material in differential topology, as far as is accessible without the methods of algebraic topology....There is an abundance of exercises, which supply many beautiful examples and much interesting additional information, and help the reader to become thoroughly familiar with the material of the main text." —MATHEMATICAL REVIEWS



Differential Geometry and Topology

Differential Geometry and Topology Author Keith Burns
ISBN-10 1584882530
Release 2005-05-27
Pages 400
Download Link Click Here

Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.



Algebraic Topology

Algebraic Topology Author Marvin J. Greenberg
ISBN-10 9780429982033
Release 2018-03-05
Pages 332
Download Link Click Here

Great first book on algebraic topology. Introduces (co)homology through singular theory.



Comparison Theorems in Riemannian Geometry

Comparison Theorems in Riemannian Geometry Author Cheeger
ISBN-10 9780444107640
Release 2009-01-15
Pages 173
Download Link Click Here

Comparison Theorems in Riemannian Geometry



Stable Mappings and Their Singularities

Stable Mappings and Their Singularities Author M. Golubitsky
ISBN-10 9781461579045
Release 2012-12-06
Pages 209
Download Link Click Here

This book aims to present to first and second year graduate students a beautiful and relatively accessible field of mathematics-the theory of singu larities of stable differentiable mappings. The study of stable singularities is based on the now classical theories of Hassler Whitney, who determined the generic singularities (or lack of them) of Rn ~ Rm (m ~ 2n - 1) and R2 ~ R2, and Marston Morse, for mappings who studied these singularities for Rn ~ R. It was Rene Thorn who noticed (in the late '50's) that all of these results could be incorporated into one theory. The 1960 Bonn notes of Thom and Harold Levine (reprinted in [42]) gave the first general exposition of this theory. However, these notes preceded the work of Bernard Malgrange [23] on what is now known as the Malgrange Preparation Theorem-which allows the relatively easy computation of normal forms of stable singularities as well as the proof of the main theorem in the subject-and the definitive work of John Mather. More recently, two survey articles have appeared, by Arnold [4] and Wall [53], which have done much to codify the new material; still there is no totally accessible description of this subject for the beginning student. We hope that these notes will partially fill this gap. In writing this manuscript, we have repeatedly cribbed from the sources mentioned above-in particular, the Thom-Levine notes and the six basic papers by Mather.



Differential Geometry of Curves and Surfaces

Differential Geometry of Curves and Surfaces Author Manfredo P. do Carmo
ISBN-10 9780486806990
Release 2016-12-14
Pages 512
Download Link Click Here

One of the most widely used texts in its field, this volume introduces the differential geometry of curves and surfaces in both local and global aspects. The presentation departs from the traditional approach with its more extensive use of elementary linear algebra and its emphasis on basic geometrical facts rather than machinery or random details. Many examples and exercises enhance the clear, well-written exposition, along with hints and answers to some of the problems. The treatment begins with a chapter on curves, followed by explorations of regular surfaces, the geometry of the Gauss map, the intrinsic geometry of surfaces, and global differential geometry. Suitable for advanced undergraduates and graduate students of mathematics, this text's prerequisites include an undergraduate course in linear algebra and some familiarity with the calculus of several variables. For this second edition, the author has corrected, revised, and updated the entire volume.



Differential Manifolds

Differential Manifolds Author Antoni A. Kosinski
ISBN-10 9780486318158
Release 2013-07-02
Pages 288
Download Link Click Here

Introductory text for advanced undergraduates and graduate students presents systematic study of the topological structure of smooth manifolds, starting with elements of theory and concluding with method of surgery. 1993 edition.



An Introduction to Morse Theory

An Introduction to Morse Theory Author Yukio Matsumoto
ISBN-10 0821810227
Release 2002
Pages 219
Download Link Click Here

In a very broad sense, ```spaces'' are the primary objects of study in geometry, and ``functions'' are the objects of study in analysis. There are, however, deep relations between functions defined on a space and the shape of the space, and the study of these relations is the main theme of Morse theory. In particular, Morse's original insight was to examine the critical points of a function and to derive information about the shape of the space from the information about the critical points. This book describes finite-dimensional Morse theory, which is an indispensable tool in the topological study of manifolds. That is, one can decompose manifolds into fundamental blocks such as cells and handles by Morse theory, and thereby compute a variety of topological invariants and discuss the shapes of manifolds. These aspects of Morse theory date from its origins and continue to be important in geometry and mathematical physics. This textbook provides an introduction to Morse theory suitable for advanced undergraduates and graduate students.



Differential Topology

Differential Topology Author C. T. C. Wall
ISBN-10 9781316673287
Release 2016-07-04
Pages
Download Link Click Here

Exploring the full scope of differential topology, this comprehensive account of geometric techniques for studying the topology of smooth manifolds offers a wide perspective on the field. Building up from first principles, concepts of manifolds are introduced, supplemented by thorough appendices giving background on topology and homotopy theory. Deep results are then developed from these foundations through in-depth treatments of the notions of general position and transversality, proper actions of Lie groups, handles (up to the h-cobordism theorem), immersions and embeddings, concluding with the surgery procedure and cobordism theory. Fully illustrated and rigorous in its approach, little prior knowledge is assumed, and yet growing complexity is instilled throughout. This structure gives advanced students and researchers an accessible route into the wide-ranging field of differential topology.



Geometry and the Imagination

Geometry and the Imagination Author David Hilbert
ISBN-10 9780821819982
Release 1999
Pages 357
Download Link Click Here

This remarkable book endures as a true masterpiece of mathematical exposition. The book is overflowing with mathematical ideas, which are always explained clearly and elegantly, and above all, with penetrating insight. It is a joy to read, both for beginners and experienced mathematicians. Geometry and the Imagination is full of interesting facts, many of which you wish you had known before. The book begins with examples of the simplest curves and surfaces, including thread constructions of certain quadrics and other surfaces. The chapter on regular systems of points leads to the crystallographic groups and the regular polyhedra in $\mathbb{R}^3$. In this chapter, they also discuss plane lattices. By considering unit lattices, and throwing in a small amount of number theory when necessary, they effortlessly derive Leibniz's series: $\pi/4 = 1 - 1/3 + 1/5 - 1/7 + - \ldots$. In the section on lattices in three and more dimensions, the authors consider sphere-packing problems, including the famous Kepler problem. One of the most remarkable chapters is ``Projective Configurations''. In a short introductory section, Hilbert and Cohn-Vossen give perhaps the most concise and lucid description of why a general geometer would care about projective geometry and why such an ostensibly plain setup is truly rich in structure and ideas. The chapter on kinematics includes a nice discussion of linkages and the geometry of configurations of points and rods that are connected and, perhaps, constrained in some way. This topic in geometry has become increasingly important in recent times, especially in applications to robotics. This is another example of a simple situation that leads to a rich geometry. It would be hard to overestimate the continuing influence Hilbert-Cohn-Vossen's book has had on mathematicians of this century. It surely belongs in the "pantheon" of great mathematics books.