Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Elements of Logic via Numbers and Sets

Elements of Logic via Numbers and Sets Author D.L. Johnson
ISBN-10 9781447106036
Release 2012-12-06
Pages 188
Download Link Click Here

In mathematics we are interested in why a particular formula is true. Intuition and statistical evidence are insufficient, so we need to construct a formal logical proof. The purpose of this book is to describe why such proofs are important, what they are made of, how to recognize valid ones, how to distinguish different kinds, and how to construct them. This book is written for 1st year students with no previous experience of formulating proofs. Dave Johnson has drawn from his considerable experience to provide a text that concentrates on the most important elements of the subject using clear, simple explanations that require no background knowledge of logic. It gives many useful examples and problems, many with fully-worked solutions at the end of the book. In addition to a comprehensive index, there is also a useful `Dramatis Personae` an index to the many symbols introduced in the text, most of which will be new to students and which will be used throughout their degree programme.



Sets Logic and Categories

Sets  Logic and Categories Author Peter J. Cameron
ISBN-10 9781447105893
Release 2012-12-06
Pages 182
Download Link Click Here

Set theory, logic and category theory lie at the foundations of mathematics, and have a dramatic effect on the mathematics that we do, through the Axiom of Choice, Gödel's Theorem, and the Skolem Paradox. But they are also rich mathematical theories in their own right, contributing techniques and results to working mathematicians such as the Compactness Theorem and module categories. The book is aimed at those who know some mathematics and want to know more about its building blocks. Set theory is first treated naively an axiomatic treatment is given after the basics of first-order logic have been introduced. The discussion is su pported by a wide range of exercises. The final chapter touches on philosophical issues. The book is supported by a World Wibe Web site containing a variety of supplementary material.



Fields and Galois Theory

Fields and Galois Theory Author John M. Howie
ISBN-10 1852339861
Release 2006
Pages 225
Download Link Click Here

This gentle introduction aimed at advanced undergraduates and beginning graduate students takes a modern, more "natural" approach to its subject, developing the theory at a gentle pace. Topics covered include rings and fields, integral domains and polynomials, field extensions and splitting fields, finite fields, and the Galois group. The book contains plenty of worked examples and exercises complete with full solutions.



Mathematics of Fuzzy Sets and Fuzzy Logic

Mathematics of Fuzzy Sets and Fuzzy Logic Author Barnab'as Bede
ISBN-10 9783642352218
Release 2012-12-14
Pages 276
Download Link Click Here

This book presents a mathematically-based introduction into the fascinating topic of Fuzzy Sets and Fuzzy Logic and might be used as textbook at both undergraduate and graduate levels and also as reference guide for mathematician, scientists or engineers who would like to get an insight into Fuzzy Logic. Fuzzy Sets have been introduced by Lotfi Zadeh in 1965 and since then, they have been used in many applications. As a consequence, there is a vast literature on the practical applications of fuzzy sets, while theory has a more modest coverage. The main purpose of the present book is to reduce this gap by providing a theoretical introduction into Fuzzy Sets based on Mathematical Analysis and Approximation Theory. Well-known applications, as for example fuzzy control, are also discussed in this book and placed on new ground, a theoretical foundation. Moreover, a few advanced chapters and several new results are included. These comprise, among others, a new systematic and constructive approach for fuzzy inference systems of Mamdani and Takagi-Sugeno types, that investigates their approximation capability by providing new error estimates.



Elements of Set Theory

Elements of Set Theory Author Herbert B. Enderton
ISBN-10 9780080570426
Release 1977-05-23
Pages 279
Download Link Click Here

This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.



Naive Set Theory

Naive Set Theory Author Paul R. Halmos
ISBN-10 9780486814872
Release 2017-04-19
Pages 112
Download Link Click Here

Classic by prominent mathematician offers a concise introduction to set theory using language and notation of informal mathematics. Topics include the basic concepts of set theory, cardinal numbers, transfinite methods, more. 1960 edition.



Elementary Analysis

Elementary Analysis Author Kenneth A. Ross
ISBN-10 9781461462712
Release 2013-04-16
Pages 412
Download Link Click Here

For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.



Symmetries

Symmetries Author D.L. Johnson
ISBN-10 1852332700
Release 2002-12-10
Pages 198
Download Link Click Here

" ... many eminent scholars, endowed with great geometric talent, make a point of never disclosing the simple and direct ideas that guided them, subordinating their elegant results to abstract general theories which often have no application outside the particular case in question. Geometry was becoming a study of algebraic, differential or partial differential equations, thus losing all the charm that comes from its being an art." H. Lebesgue, Ler;ons sur les Constructions Geometriques, Gauthier Villars, Paris, 1949. This book is based on lecture courses given to final-year students at the Uni versity of Nottingham and to M.Sc. students at the University of the West Indies in an attempt to reverse the process of expurgation of the geometry component from the mathematics curricula of universities. This erosion is in sharp contrast to the situation in research mathematics, where the ideas and methods of geometry enjoy ever-increasing influence and importance. In the other direction, more modern ideas have made a forceful and beneficial impact on the geometry of the ancients in many areas. Thus trigonometry has vastly clarified our concept of angle, calculus has revolutionised the study of plane curves, and group theory has become the language of symmetry.



The Art of Proof

The Art of Proof Author Matthias Beck
ISBN-10 1441970231
Release 2010-08-17
Pages 182
Download Link Click Here

The Art of Proof is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.



Fundamentals of Mathematics

Fundamentals of Mathematics Author Bernd S. W. Schröder
ISBN-10 0470551380
Release 2010-08-16
Pages 338
Download Link Click Here

An accessible introduction to abstract mathematics with an emphasis on proof writing Addressing the importance of constructing and understanding mathematical proofs, Fundamentals of Mathematics: An Introduction to Proofs, Logic, Sets, and Numbers introduces key concepts from logic and set theory as well as the fundamental definitions of algebra to prepare readers for further study in the field of mathematics. The author supplies a seamless, hands-on presentation of number systems, utilizing key elements of logic and set theory and encouraging readers to abide by the fundamental rule that you are not allowed to use any results that you have not proved yet. The book begins with a focus on the elements of logic used in everyday mathematical language, exposing readers to standard proof methods and Russell's Paradox. Once this foundation is established, subsequent chapters explore more rigorous mathematical exposition that outlines the requisite elements of Zermelo-Fraenkel set theory and constructs the natural numbers and integers as well as rational, real, and complex numbers in a rigorous, yet accessible manner. Abstraction is introduced as a tool, and special focus is dedicated to concrete, accessible applications, such as public key encryption, that are made possible by abstract ideas. The book concludes with a self-contained proof of Abel's Theorem and an investigation of deeper set theory by introducing the Axiom of Choice, ordinal numbers, and cardinal numbers. Throughout each chapter, proofs are written in much detail with explicit indications that emphasize the main ideas and techniques of proof writing. Exercises at varied levels of mathematical development allow readers to test their understanding of the material, and a related Web site features video presentations for each topic, which can be used along with the book or independently for self-study. Classroom-tested to ensure a fluid and accessible presentation, Fundamentals of Mathematics is an excellent book for mathematics courses on proofs, logic, and set theory at the upper-undergraduate level as well as a supplement for transition courses that prepare students for the rigorous mathematical reasoning of advanced calculus, real analysis, and modern algebra. The book is also a suitable reference for professionals in all areas of mathematics education who are interested in mathematical proofs and the foundation upon which all mathematics is built.



Mathematica A Problem Centered Approach

Mathematica    A Problem Centered Approach Author Roozbeh Hazrat
ISBN-10 9783319275857
Release 2016-01-04
Pages 318
Download Link Click Here

This textbook introduces the vast array of features and powerful mathematical functions of Mathematica using a multitude of clearly presented examples and worked-out problems. Each section starts with a description of a new topic and some basic examples. The author then demonstrates the use of new commands through three categories of problems - the first category highlights those essential parts of the text that demonstrate the use of new commands in Mathematica whilst solving each problem presented; - the second comprises problems that further demonstrate the use of commands previously introduced to tackle different situations; and - the third presents more challenging problems for further study. The intention is to enable the reader to learn from the codes, thus avoiding long and exhausting explanations. While based on a computer algebra course taught to undergraduate students of mathematics, science, engineering and finance, the book also includes chapters on calculus and solving equations, and graphics, thus covering all the basic topics in Mathematica. With its strong focus upon programming and problem solving, and an emphasis on using numerical problems that do not need any particular background in mathematics, this book is also ideal for self-study and as an introduction to researchers who wish to use Mathematica as a computational tool. This new edition has been extensively revised and updated, and includes new chapters with problems and worked examples.



The Whole Truth About Whole Numbers

The Whole Truth About Whole Numbers Author Sylvia Forman
ISBN-10 9783319110356
Release 2015-01-02
Pages 282
Download Link Click Here

The Whole Truth About Whole Numbers is an introduction to the field of Number Theory for students in non-math and non-science majors who have studied at least two years of high school algebra. Rather than giving brief introductions to a wide variety of topics, this book provides an in-depth introduction to the field of Number Theory. The topics covered are many of those included in an introductory Number Theory course for mathematics majors, but the presentation is carefully tailored to meet the needs of elementary education, liberal arts, and other non-mathematical majors. The text covers logic and proofs, as well as major concepts in Number Theory, and contains an abundance of worked examples and exercises to both clearly illustrate concepts and evaluate the students’ mastery of the material.



An Introduction to Enumeration

An Introduction to Enumeration Author Alan Camina
ISBN-10 0857296000
Release 2011-05-16
Pages 232
Download Link Click Here

Written for students taking a second or third year undergraduate course in mathematics or computer science, this book is the ideal companion to a course in enumeration. Enumeration is a branch of combinatorics where the fundamental subject matter is numerous methods of pattern formation and counting. Introduction to Enumeration provides a comprehensive and practical introduction to this subject giving a clear account of fundamental results and a thorough grounding in the use of powerful techniques and tools. Two major themes run in parallel through the book, generating functions and group theory. The former theme takes enumerative sequences and then uses analytic tools to discover how they are made up. Group theory provides a concise introduction to groups and illustrates how the theory can be used to count the number of symmetries a particular object has. These enrich and extend basic group ideas and techniques. The authors present their material through examples that are carefully chosen to establish key results in a natural setting. The aim is to progressively build fundamental theorems and techniques. This development is interspersed with exercises that consolidate ideas and build confidence. Some exercises are linked to particular sections while others range across a complete chapter. Throughout, there is an attempt to present key enumerative ideas in a graphic way, using diagrams to make them immediately accessible. The development assumes some basic group theory, a familiarity with analytic functions and their power series expansion along with some basic linear algebra.



Mathematics for Finance

Mathematics for Finance Author Marek Capinski
ISBN-10 9781852338466
Release 2006-04-18
Pages 314
Download Link Click Here

This textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.



Introduction to Mathematical Structures and Proofs

Introduction to Mathematical Structures and Proofs Author Larry J. Gerstein
ISBN-10 9781461442653
Release 2012-06-05
Pages 401
Download Link Click Here

As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com for instructors adopting the text for a course.



Set Theory

Set Theory Author Abhijit Dasgupta
ISBN-10 9781461488545
Release 2013-12-11
Pages 444
Download Link Click Here

What is a number? What is infinity? What is continuity? What is order? Answers to these fundamental questions obtained by late nineteenth-century mathematicians such as Dedekind and Cantor gave birth to set theory. This textbook presents classical set theory in an intuitive but concrete manner. To allow flexibility of topic selection in courses, the book is organized into four relatively independent parts with distinct mathematical flavors. Part I begins with the Dedekind–Peano axioms and ends with the construction of the real numbers. The core Cantor–Dedekind theory of cardinals, orders, and ordinals appears in Part II. Part III focuses on the real continuum. Finally, foundational issues and formal axioms are introduced in Part IV. Each part ends with a postscript chapter discussing topics beyond the scope of the main text, ranging from philosophical remarks to glimpses into landmark results of modern set theory such as the resolution of Lusin's problems on projective sets using determinacy of infinite games and large cardinals. Separating the metamathematical issues into an optional fourth part at the end makes this textbook suitable for students interested in any field of mathematics, not just for those planning to specialize in logic or foundations. There is enough material in the text for a year-long course at the upper-undergraduate level. For shorter one-semester or one-quarter courses, a variety of arrangements of topics are possible. The book will be a useful resource for both experts working in a relevant or adjacent area and beginners wanting to learn set theory via self-study.



Mathematics and Its History

Mathematics and Its History Author John Stillwell
ISBN-10 9781441960528
Release 2010-08-02
Pages 662
Download Link Click Here

From a review of the second edition: "This book covers many interesting topics not usually covered in a present day undergraduate course, as well as certain basic topics such as the development of the calculus and the solution of polynomial equations. The fact that the topics are introduced in their historical contexts will enable students to better appreciate and understand the mathematical ideas involved...If one constructs a list of topics central to a history course, then they would closely resemble those chosen here." (David Parrott, Australian Mathematical Society) This book offers a collection of historical essays detailing a large variety of mathematical disciplines and issues; it’s accessible to a broad audience. This third edition includes new chapters on simple groups and new sections on alternating groups and the Poincare conjecture. Many more exercises have been added as well as commentary that helps place the exercises in context.