Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Engineered Carbohydrate Based Materials for Biomedical Applications

Engineered Carbohydrate Based Materials for Biomedical Applications Author Ravin Narain
ISBN-10 9781118002247
Release 2011-03-01
Pages 416
Download Link Click Here

This book addresses the need for a comprehensive book on the design, synthesis, and characterization of synthetic carbohydrate-based polymeric materials along with their biological applications. The first two chapters cover the synthesis and self-assembly of glycopolymers and different techniques for creating these synthetic polymers. Subsequent chapters account for the preparation of block copolymers, branched glycopolymers, glycosurfaces, glycodendrimers, cationic glycopolymers, bioconjugates, glyconanoparticles and hydrogels. While these chapters comprehensively review the synthetic and characterization methods of those carbohydrate-based materials, their biological applications are discussed in detail.



Engineered Carbohydrate Based Materials for Biomedical Applications

Engineered Carbohydrate Based Materials for Biomedical Applications Author Ravin Narain
ISBN-10 OCLC:708354398
Release 2011-04-12
Pages 424
Download Link Click Here

Engineered Carbohydrate Based Materials for Biomedical Applications has been writing in one form or another for most of life. You can find so many inspiration from Engineered Carbohydrate Based Materials for Biomedical Applications also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Engineered Carbohydrate Based Materials for Biomedical Applications book for free.



Natural and Synthetic Biomedical Polymers

Natural and Synthetic Biomedical Polymers Author Sangamesh Kumbar
ISBN-10 9780123972903
Release 2014-01-21
Pages 420
Download Link Click Here

Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research community of approximately 28,000+. Summarizing the main advances in biopolymer development of the last decades, this work systematically covers both the physical science and biomedical engineering of the multidisciplinary field. Coverage extends across synthesis, characterization, design consideration and biomedical applications. The work supports scientists researching the formulation of novel polymers with desirable physical, chemical, biological, biomechanical and degradation properties for specific targeted biomedical applications. Combines chemistry, biology and engineering for expert and appropriate integration of design and engineering of polymeric biomaterials Physical, chemical, biological, biomechanical and degradation properties alongside currently deployed clinical applications of specific biomaterials aids use as single source reference on field. 15+ case studies provides in-depth analysis of currently used polymeric biomaterials, aiding design considerations for the future



Multifaceted Development and Application of Biopolymers for Biology Biomedicine and Nanotechnology

Multifaceted Development and Application of Biopolymers for Biology  Biomedicine and Nanotechnology Author Pradip Kumar Dutta
ISBN-10 9783642401237
Release 2013-09-18
Pages 346
Download Link Click Here

Nanoparticles for Gene Delivery into Stem Cells and Embryos, by Pallavi Pushp, Rajdeep Kaur, Hoon Taek Lee, Mukesh Kumar Gupta. Engineering of Polysaccharides via Nanotechnology, by Joydeep Dutta. Hydroxyapatite-Packed Chitosan-PMMA Nanocomposite: A Promising Material for Construction of Synthetic Bone, by Arundhati Bhowmick, Subhash Banerjee, Ratnesh Kumar, Patit Paban Kundu. Biodegradable Polymers for Potential Delivery Systems for Therapeutics, by Sanjeev K. Pandey, Chandana Haldar, Dinesh K. Patel, Pralay Maiti. Phytomedicine-Loaded Polymeric Nanomedicines: Potential Cancer Therapeutics, by S. Maya, M. Sabitha, Shantikumar V. Nair, R. Jayakumar. Proteins and Carbohydrates as Polymeric Nanodrug Delivery Systems: Formulation, Properties and Toxicological Evaluation, by Dhanya Narayanan, J. Gopikrishna, Shantikumar V. Nair, Deepthy Menon. Biopolymeric Micro and Nanoparticles: Preparation, Characterization and Industrial Applications, by Anil Kumar Anal, Alisha Tuladhar. Applications of Glyconanoparticles as “Sweet” Glycobiological Therapeutics and Diagnostics, by Naresh Kottari, Yoann M. Chabre, Rishi Sharma, René Roy.



Chemistry of Bioconjugates

Chemistry of Bioconjugates Author Ravin Narain
ISBN-10 9781118776377
Release 2013-12-02
Pages 496
Download Link Click Here

Explores bioconjugate properties and applications of polymers, dendrimers, lipids, nanoparticles, and nanotubes Bioconjugation has enabled breakthroughs across many areas of industry and biomedicine. With its emphasis on synthesis, properties and applications, this book enables readers to understand the connection between chemistry and the biological application of bioconjugated materials. Its detailed descriptions of methods make it possible for researchers to fabricate and take full advantage of bioconjugates for a broad range of applications. Moreover, the book sets the foundation for the development of new applications, including assays, imaging, biosensors, drug delivery, and diagnostics. Chemistry of Bioconjugates features contributions from an international team of leading experts and pioneers in the field. These contributions reflect the authors’ firsthand laboratory experience as well as a thorough review of the current literature. The book’s six sections examine: General methods of bioconjugation Polymer bioconjugates Organic nanoparticle-based bioconjugates Inorganic nanomaterial bioconjugates, including metals and metal oxides Cell-based, hydrogel/microgel, and glyco-bioconjugates Characterization, physico-(bio)chemical properties, and applications of bioconjugates This comprehensive exploration of bioconjugates includes discussions of polymers, dendrimers, lipids, nanoparticles, and nanotubes. References at the end of each chapter serve as a gateway to the most important original research findings and reviews in the field. By drawing together and analyzing all the latest chemical methods and research findings on the physico-chemical and biochemical properties of bioconjugates, Chemistry of Bioconjugates sheds new light on the significance and potential of bioconjugation. The book is recommended for organic and polymer chemists, biochemists, biomaterial scientists, carbohydrate chemists, biophysicists, bioengineers, and drug and gene delivery scientists.



Smart Biomaterials

Smart Biomaterials Author Mitsuhiro Ebara
ISBN-10 9784431544005
Release 2014-05-28
Pages 373
Download Link Click Here

This book provides comprehensive coverage of smart biomaterials and their potential applications, a field that is developing at a very rapid pace. Because smart biomaterials are an emerging class of biomaterials that respond to small changes in external stimuli with large discontinuous changes in their physical properties, they have been designed to act as an “on–off” switch for, among others, bio separation, immunoanalysis, drug delivery technologies, gene therapy, diagnostics, bio sensors and artificial muscles. After an introduction to the topic and the history of smart biomaterials, the author gives the reader an in-depth look at the properties, mechanics, and characterization of smart biomaterials including hydrogels, particles, assemblies, surfaces, fibers and conjugates. Information on the wide range of applications for these materials follows, including drug delivery, tissue engineering, diagnostics, biosensors, bio separation and actuators. In addition, recent advances in shape memory biomaterials as active components of medical devices are also presented.



Introduction to Polymer Chemistry Fourth Edition

Introduction to Polymer Chemistry  Fourth Edition Author Charles E. Carraher Jr.
ISBN-10 9781498737869
Release 2017-01-06
Pages 588
Download Link Click Here

Introduction to Polymer Chemistry provides undergraduate students with a much-needed, well-rounded presentation of the principles and applications of natural, synthetic, inorganic, and organic polymers. With an emphasis on the environment and green chemistry and materials, this fourth edition continues to provide detailed coverage of natural and synthetic giant molecules, inorganic and organic polymers, elastomers, adhesives, coatings, fibers, plastics, blends, caulks, composites, and ceramics. Building on undergraduate work in foundational courses, the text fulfills the American Chemical Society Committee on Professional Training (ACS CPT) in-depth course requirement



Carraher s Polymer Chemistry Tenth Edition

Carraher s Polymer Chemistry  Tenth Edition Author Charles E. Carraher Jr.
ISBN-10 9781498737494
Release 2017-10-12
Pages 794
Download Link Click Here

Carraher's Polymer Chemistry, Tenth Edition integrates the core areas of polymer science. Along with updating of each chapter, newly added content reflects the growing applications in Biochemistry, Biomaterials, and Sustainable Industries. Providing a user-friendly approach to the world of polymeric materials, the book allows students to integrate their chemical knowledge and establish a connection between fundamental and applied chemical information. It contains all of the elements of an introductory text with synthesis, property, application, and characterization. Special sections in each chapter contain definitions, learning objectives, questions, case studies and additional reading.



Surface Active Monomers

Surface Active Monomers Author Mykola Borzenkov
ISBN-10 9783319084466
Release 2014-07-01
Pages 67
Download Link Click Here

This brief includes information on the background of and development of synthesis of various types of surface active monomers. The authors explain the importance of utilization of surface active monomers for creation of surface active polymers and the various biomedical applications of such compounds . This brief introduces techniques for the synthesis of novel types of surface active monomers, their colloidal and polymerizable properties and application for needs of medicine and biology.



Nanogels for Biomedical Applications

Nanogels for Biomedical Applications Author Arti Vashist
ISBN-10 9781782628620
Release 2017-11-20
Pages 306
Download Link Click Here

A comprehensive overview of nanogel-based systems and their applications in nanomedicine.



Cationic Polymers in Regenerative Medicine

Cationic Polymers in Regenerative Medicine Author Sangram Keshari Samal
ISBN-10 9781782620105
Release 2014-11-14
Pages 612
Download Link Click Here

The unique physico-chemical properties of cationic polymers and their ability to be easily modified make them attractive for many biological applications. As a result there is a vast amount of research focussed on designing novel natural or synthetic cationic polymers with specific biological functionality. Cationic Polymers in Regenerative Medicine brings together the expertise of leading experts in the field to provide a comprehensive overview of the recent advances in cationic polymer synthesis, modification and the design of biomaterials with different structures for therapeutic applications. Chapters cover recent developments in novel cationic polymer based systems including poly(L-lysine), Poly(N,N-dimethylaminoethyl methacrylate) and cationic triazine dendrimers as well as cationic polymer-coated micro- and nanoparticles and cationic cellulose and chitin nanocrystals. Applications discussed in the book include drug and gene delivery, therapeutics in thrombosis and inflammation as well as gene therapy. Suitable both for an educational perspective for those new to the field and those already active in the field, the book appeals to postgraduates and researchers. The broad aspects of the topics covered are suitable for polymer chemists interested in the fundamentals of the materials systems as well as pharmaceutical chemists, bioengineering and medical professionals interested in their applications.



Soft Nanoparticles for Biomedical Applications

Soft Nanoparticles for Biomedical Applications Author José Callejas-Fernández
ISBN-10 9781782625216
Release 2014-06-18
Pages 410
Download Link Click Here

Nanoparticles are attractive for many biomedical applications such as imaging, therapeutics and diagnostics. This new book looks at different soft nanoparticles and their current and potential uses in medicine and health including magnetoliposomes, micro/nanogels, polymeric micelles, DNA particles, dendrimers and bicelles. Each chapter provides a description of the synthesis of the particles and focus on the techniques used to characterize the size, shape, surface charge, internal structure, and surface microstructure of the nanoparticles together with modeling and simulation methods. By giving a strong physical-chemical approach to the topic, readers will gain a good background into the subject and an overview of recent developments. The multidisciplinary point of view makes the book suitable for postgraduate students and researchers in physics, chemistry, and biology interested in soft matter and its uses.



Biomimetic Approaches for Biomaterials Development

Biomimetic Approaches for Biomaterials Development Author Joao F. Mano
ISBN-10 9783527652297
Release 2013-02-08
Pages 606
Download Link Click Here

Biomimetics, in general terms, aims at understanding biological principles and applying them for the development of man-made tools and technologies. This approach is particularly important for the purposeful design of passive as well as functional biomaterials that mimic physicochemical, mechanical and biological properties of natural materials, making them suitable, for example, for biomedical devices or as scaffolds for tissue regeneration. The book comprehensively covers biomimetic approaches to the development of biomaterials, including: an overview of naturally occurring or nature inspired biomaterials; an in-depth treatment of the surface aspects pivotal for the functionality; synthesis and self-assembly methods to prepare devices to be used in mineralized tissues such as bone and teeth; and preparation of biomaterials for the controlled/ sustained release of bioactive agents. The last part reviews the applications of bioinspired materials and principles of design in regenerative medicine such as in-situ grown bone or cartilage as well as the biomimetic techniques for soft tissue engineering. The comprehensive scope of this book makes it a must-have addition to the bookshelf of everyone in the fields of Materials Science/Engineering, Nanotechnologies / Nanosciences, Medical Sciences, Biochemistry, Polymer Chemistry, and Biomedical Engineering.



Multivalency

Multivalency Author Jurriaan Huskens
ISBN-10 9781119143468
Release 2018-02-05
Pages 416
Download Link Click Here

Connects fundamental knowledge of multivalent interactions with current practice and state-of-the-art applications Multivalency is a widespread phenomenon, with applications spanning supramolecular chemistry, materials chemistry, pharmaceutical chemistry and biochemistry. This advanced textbook provides students and junior scientists with an excellent introduction to the fundamentals of multivalent interactions, whilst expanding the knowledge of experienced researchers in the field. Multivalency: Concepts, Research & Applications is divided into three parts. Part one provides background knowledge on various aspects of multivalency and cooperativity and presents practical methods for their study. Fundamental aspects such as thermodynamics, kinetics and the principle of effective molarity are described, and characterisation methods, experimental methodologies and data treatment methods are also discussed. Parts two and three provide an overview of current systems in which multivalency plays an important role in chemistry and biology, with a focus on the design rules, underlying chemistry and the fundamental principles of multivalency. The systems covered range from chemical/materials-based ones such as dendrimers and sensors, to biological systems including cell recognition and protein binding. Examples and case studies from biochemistry/bioorganic chemistry as well as synthetic systems feature throughout the book. Introduces students and young scientists to the field of multivalent interactions and assists experienced researchers utilising the methodologies in their work Features examples and case studies from biochemistry/bioorganic chemistry, as well as synthetic systems throughout the book Edited by leading experts in the field with contributions from established scientists Multivalency: Concepts, Research & Applications is recommended for graduate students and junior scientists in supramolecular chemistry and related fields, looking for an introduction to multivalent interactions. It is also highly useful to experienced academics and scientists in industry working on research relating to multivalent and cooperative systems in supramolecular chemistry, organic chemistry, pharmaceutical chemistry, chemical biology, biochemistry, materials science and nanotechnology.



Smart External Stimulus Responsive Nanocarriers for Drug and Gene Delivery

Smart External Stimulus Responsive Nanocarriers for Drug and Gene Delivery Author Mahdi Karimi
ISBN-10 9781681740102
Release 2015-12-01
Pages 155
Download Link Click Here

The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo, this can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. The nanocarrier serves to protect the cargo from degradation by enzymes in the body, to enhance the solubility of insoluble drugs, to extend the circulation half-life, and to enhance its penetration and accumulation at the target site. Importantly, smart nanocarriers can be designed to be responsive to a specific stimulus, so that the cargo is only released or activated when desired. In this volume we cover smart nanocarriers that respond to externally applied stimuli that usually involve application of physical energy. This physical energy can be applied from outside the body and can either cause cargo release, or can activate the nanostructure to be cytotoxic, or both. The stimuli covered include light of various wavelengths (ultraviolet, visible or infrared), temperature (increased or decreased), magnetic fields (used to externally manipulate nanostructures and to activate them), ultrasound, and electrical and mechanical forces. Finally we discuss the issue of nanotoxicology and the future scope of the field.



Iron Oxide Nanoparticles for Biomedical Applications

Iron Oxide Nanoparticles for Biomedical Applications Author Sophie Laurent
ISBN-10 9780081012758
Release 2017-10-20
Pages 334
Download Link Click Here

Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application begins with several chapters covering the synthesis, stabilization, physico-chemical characterization and functionalization of iron oxide nanoparticles. The second part of the book outlines the various biomedical imaging applications that currently take advantage of the magnetic properties of iron oxide nanoparticles. Brief attention is given to potential iron oxide based therapies, while the final chapter covers nanocytotoxicity, which is a key concern wherever exposure to nanomaterials might occur. This comprehensive book is an essential reference for all those academics and professionals who require thorough knowledge of recent and future developments in the role of iron oxide nanoparticles in biomedicine. Unlocks the potential of iron oxide nanoparticles to transform diagnostic imaging techniques Contains full coverage of new developments and recent research, making this essential reading for researchers and engineers alike Explains the synthesis, processing and characterization of iron oxide nanoparticles with a view to their use in biomedicine



Polymeric and Self Assembled Hydrogels

Polymeric and Self Assembled Hydrogels Author Xian Jun Loh
ISBN-10 9781849735612
Release 2012
Pages 262
Download Link Click Here

The diverse range of applications has thrust hydrogels into the spotlight of scientific research. From biomedical applications in tissue engineering, drug delivery and wound healing, and consumer care products such as contact lenses to laboratory purification in chromatography and as electrophoresis gels, many researchers are looking at hydrogels for their materials solutions. This rapid expansion of the field has however created a gap between the current knowledge and understanding of hydrogel research and its future outlook. To overcome this, Polymeric and Self Assembled Hydrogels captures the entire landscape of hydrogels research providing a guidebook for academics, industrialists and postgraduates interested in the area. With contributions from the top authorities in the field, the book details the fundamental principles of both synthetic and natural polymeric networks and supramolecular hydrogels from either surfactants or peptides, along with examples of their major applications. This is the resource to give you everything you need to know about hydrogel research.