Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Essential Topology

Essential Topology Author Martin D. Crossley
ISBN-10 1852337826
Release 2005-01-01
Pages 224
Download Link Click Here

This thoroughly modern introduction to undergraduate topology brings the most exciting and useful aspects of modern topology to the reader. Containing all the key results of basic topology, this book concentrates on uniting the most interesting aspects of the subject with aspects that are most useful to research. It is suitable for self-study, and will leave the reader both motivated and well prepared for further study.



Essential Topology

Essential Topology Author Martin D. Crossley
ISBN-10 1852337826
Release 2005-01-01
Pages 224
Download Link Click Here

This thoroughly modern introduction to undergraduate topology brings the most exciting and useful aspects of modern topology to the reader. Containing all the key results of basic topology, this book concentrates on uniting the most interesting aspects of the subject with aspects that are most useful to research. It is suitable for self-study, and will leave the reader both motivated and well prepared for further study.



Introduction to Ring Theory

Introduction to Ring Theory Author Paul M. Cohn
ISBN-10 9781447104759
Release 2012-12-06
Pages 229
Download Link Click Here

A clear and structured introduction to the subject. After a chapter on the definition of rings and modules there are brief accounts of Artinian rings, commutative Noetherian rings and ring constructions, such as the direct product, Tensor product and rings of fractions, followed by a description of free rings. Readers are assumed to have a basic understanding of set theory, group theory and vector spaces. Over two hundred carefully selected exercises are included, most with outline solutions.



Essential Real Analysis

Essential Real Analysis Author Michael Field
ISBN-10 9783319675466
Release 2017-11-06
Pages 450
Download Link Click Here

This book provides a rigorous introduction to the techniques and results of real analysis, metric spaces and multivariate differentiation, suitable for undergraduate courses. Starting from the very foundations of analysis, it offers a complete first course in real analysis, including topics rarely found in such detail in an undergraduate textbook such as the construction of non-analytic smooth functions, applications of the Euler-Maclaurin formula to estimates, and fractal geometry. Drawing on the author’s extensive teaching and research experience, the exposition is guided by carefully chosen examples and counter-examples, with the emphasis placed on the key ideas underlying the theory. Much of the content is informed by its applicability: Fourier analysis is developed to the point where it can be rigorously applied to partial differential equations or computation, and the theory of metric spaces includes applications to ordinary differential equations and fractals. Essential Real Analysis will appeal to students in pure and applied mathematics, as well as scientists looking to acquire a firm footing in mathematical analysis. Numerous exercises of varying difficulty, including some suitable for group work or class discussion, make this book suitable for self-study as well as lecture courses.



A Taste of Topology

A Taste of Topology Author Volker Runde
ISBN-10 038725790X
Release 2005-07-06
Pages 176
Download Link Click Here

Having evolved from Runde’s notes for an introductory topology course at the University of Alberta, this essential text provides a concise introduction to set-theoretic topology. In places, Runde’s text treats its material differently to other books on the subject, providing a fresh perspective.



Elementary Differential Geometry

Elementary Differential Geometry Author A.N. Pressley
ISBN-10 9781848828919
Release 2010-03-10
Pages 474
Download Link Click Here

Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces suitable for a first course on the subject. Prerequisites are kept to an absolute minimum – nothing beyond first courses in linear algebra and multivariable calculus – and the most direct and straightforward approach is used throughout. New features of this revised and expanded second edition include: a chapter on non-Euclidean geometry, a subject that is of great importance in the history of mathematics and crucial in many modern developments. The main results can be reached easily and quickly by making use of the results and techniques developed earlier in the book. Coverage of topics such as: parallel transport and its applications; map colouring; holonomy and Gaussian curvature. Around 200 additional exercises, and a full solutions manual for instructors, available via www.springer.com ul>



Topology

Topology Author Donald W. Kahn
ISBN-10 0486686094
Release 1975
Pages 217
Download Link Click Here

Comprehensive coverage of elementary general topology as well as algebraic topology, specifically 2-manifolds, covering spaces and fundamental groups. Problems, with selected solutions. Bibliography. 1975 edition.



Metric Spaces

Metric Spaces Author Mícheál O'Searcoid
ISBN-10 1846286271
Release 2006-12-26
Pages 304
Download Link Click Here

The abstract concepts of metric spaces are often perceived as difficult. This book offers a unique approach to the subject which gives readers the advantage of a new perspective on ideas familiar from the analysis of a real line. Rather than passing quickly from the definition of a metric to the more abstract concepts of convergence and continuity, the author takes the concrete notion of distance as far as possible, illustrating the text with examples and naturally arising questions. Attention to detail at this stage is designed to prepare the reader to understand the more abstract ideas with relative ease.



Topology of surfaces knots and manifolds

Topology of surfaces  knots  and manifolds Author Stephan C. Carlson
ISBN-10 UOM:39015049686283
Release 2001
Pages 157
Download Link Click Here

Master the basic ideas of the topology of manifolds TOPOLOGY OF SURFACES, KNOTS, AND MANIFOLDS offers an intuition-based and example-driven approach to the basic ideas and problems involving manifolds, particularly one- and two-dimensional manifolds. A blend of examples and exercises leads the reader to anticipate general definitions and theorems concerning curves, surfaces, knots, and links--the objects of interest in the appealing set of mathematical ideas known as "rubber sheet geometry." The result is a text that is accessible to a broad range of undergraduate students, yet will provides solid coverage of the mathematics underlying these topics. Here are some of the features that make Carlson's approach work: A student-friendly writing style provides a clear exposition of concepts.mathematical results are presented accurately and main definitions, theorems, and remarks are clearly highlighted for easy reference.Carefully selected exercises, some of which require hands-on work on computer-aided visualization, reinforce the understanding of concepts or further develop ideas.Extensive use of illustrations helps the students develop an intuitive understanding of the material.Frequent historical references chronicle the development of the subject and highlight connections between topology and other areas of mathematics.Chapter summary sections offer a review of each chapter's topics and a transitional look forward to the next chapter.



Basic Topology

Basic Topology Author M.A. Armstrong
ISBN-10 9781475717938
Release 2013-04-09
Pages 251
Download Link Click Here

In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for their calculating. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties help students gain a thorough understanding of the subject.



Introduction to Lie Algebras

Introduction to Lie Algebras Author K. Erdmann
ISBN-10 9781846284908
Release 2006-09-28
Pages 251
Download Link Click Here

Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.



Topology

Topology Author Klaus Jänich
ISBN-10 1461270189
Release 2012-10-03
Pages 193
Download Link Click Here

Contents: Introduction. - Fundamental Concepts. - Topological Vector Spaces.- The Quotient Topology. - Completion of Metric Spaces. - Homotopy. - The Two Countability Axioms. - CW-Complexes. - Construction of Continuous Functions on Topological Spaces. - Covering Spaces. - The Theorem of Tychonoff. - Set Theory (by T. Br|cker). - References. - Table of Symbols. -Index.



Differential Geometry and Its Applications

Differential Geometry and Its Applications Author John Oprea
ISBN-10 0883857480
Release 2007-09-06
Pages 469
Download Link Click Here

Differential geometry has a long, wonderful history it has found relevance in areas ranging from machinery design of the classification of four-manifolds to the creation of theories of nature's fundamental forces to the study of DNA. This book studies the differential geometry of surfaces with the goal of helping students make the transition from the compartmentalized courses in a standard university curriculum to a type of mathematics that is a unified whole, it mixes geometry, calculus, linear algebra, differential equations, complex variables, the calculus of variations, and notions from the sciences. Differential geometry is not just for mathematics majors, it is also for students in engineering and the sciences. Into the mix of these ideas comes the opportunity to visualize concepts through the use of computer algebra systems such as Maple. The book emphasizes that this visualization goes hand-in-hand with the understanding of the mathematics behind the computer construction. Students will not only “see” geodesics on surfaces, but they will also see the effect that an abstract result such as the Clairaut relation can have on geodesics. Furthermore, the book shows how the equations of motion of particles constrained to surfaces are actually types of geodesics. Students will also see how particles move under constraints. The book is rich in results and exercises that form a continuous spectrum, from those that depend on calculation to proofs that are quite abstract.



Introduction to Topological Manifolds

Introduction to Topological Manifolds Author John Lee
ISBN-10 9781441979407
Release 2010-12-25
Pages 433
Download Link Click Here

This book is an introduction to manifolds at the beginning graduate level, and accessible to any student who has completed a solid undergraduate degree in mathematics. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields. Although this second edition has the same basic structure as the first edition, it has been extensively revised and clarified; not a single page has been left untouched. The major changes include a new introduction to CW complexes (replacing most of the material on simplicial complexes in Chapter 5); expanded treatments of manifolds with boundary, local compactness, group actions, and proper maps; and a new section on paracompactness.



Undergraduate Topology

Undergraduate Topology Author Aisling McCluskey
ISBN-10 9780198702337
Release 2014
Pages 144
Download Link Click Here

This textbook offers an accessible, modern introduction at undergraduate level to an area known variously as general topology, point-set topology or analytic topology with a particular focus on helping students to build theory for themselves. It is the result of several years of the authors' combined university teaching experience stimulated by sustained interest in advanced mathematical thinking and learning, alongside established research careers in analytic topology. Point-set topology is a discipline that needs relatively little background knowledge, but sufficient determination to grasp ideas precisely and to argue with straight and careful logic. Research and long experience in undergraduate mathematics education suggests that an optimal way to learn such a subject is to teach it to yourself, pro-actively, by guided reading of brief skeleton notes and by doing your own spadework to fill in the details and to flesh out the examples. This text will facilitate such an approach for those learners who opt to do it this way and for those instructors who would like to encourage this so-called 'Moore approach', even for a modest segment of the teaching term or for part of the class. In reality, most students simply do not have the combination of time, background and motivation needed to implement such a plan fully. The accessibility, flexibility and completeness of this text enable it to be used equally effectively for more conventional instructor-led courses. Critically, it furnishes a rich variety of exercises and examples, many of which have specimen solutions, through which to gain in confidence and competence.



Topology of Surfaces

Topology of Surfaces Author L.Christine Kinsey
ISBN-10 9781461208990
Release 2012-12-06
Pages 281
Download Link Click Here

" . . . that famous pedagogical method whereby one begins with the general and proceeds to the particular only after the student is too confused to understand even that anymore. " Michael Spivak This text was written as an antidote to topology courses such as Spivak It is meant to provide the student with an experience in geomet describes. ric topology. Traditionally, the only topology an undergraduate might see is point-set topology at a fairly abstract level. The next course the average stu dent would take would be a graduate course in algebraic topology, and such courses are commonly very homological in nature, providing quick access to current research, but not developing any intuition or geometric sense. I have tried in this text to provide the undergraduate with a pragmatic introduction to the field, including a sampling from point-set, geometric, and algebraic topology, and trying not to include anything that the student cannot immediately experience. The exercises are to be considered as an in tegral part of the text and, ideally, should be addressed when they are met, rather than at the end of a block of material. Many of them are quite easy and are intended to give the student practice working with the definitions and digesting the current topic before proceeding. The appendix provides a brief survey of the group theory needed.



Measure Topology and Fractal Geometry

Measure  Topology  and Fractal Geometry Author Gerald Edgar
ISBN-10 9780387747491
Release 2007-10-23
Pages 272
Download Link Click Here

Based on a course given to talented high-school students at Ohio University in 1988, this book is essentially an advanced undergraduate textbook about the mathematics of fractal geometry. It nicely bridges the gap between traditional books on topology/analysis and more specialized treatises on fractal geometry. The book treats such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. It takes into account developments in the subject matter since 1990. Sections are clear and focused. The book contains plenty of examples, exercises, and good illustrations of fractals, including 16 color plates.