Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Essentials of Mechanical Stress Analysis

Essentials of Mechanical Stress Analysis Author Amir Javidinejad
ISBN-10 9781482258486
Release 2014-11-07
Pages 264
Download Link Click Here

Developed with stress analysts handling multidisciplinary subjects in mind, and written to provide the theories needed for problem solving and stress analysis on structural systems, Essentials of Mechanical Stress Analysis presents a variety of relevant topics—normally offered as individual course topics—that are crucial for carrying out the analysis of structures. This work explores concepts through both theory and numerical examples, and covers the analytical and numerical approaches to stress analysis, as well as isotropic, metallic, and orthotropic composite material analyses. Comprised of 13 chapters, this must-have resource: Establishes the fundamentals of material behavior required for understanding the concepts of stress analysis Defines stress and strain, and elaborates on the basic concepts exposing the relationship between the two Discusses topics related to contact stresses and pressure vessels Introduces the different failure criteria and margins of safety calculations for ductile and brittle materials Illustrates beam analysis theory under various types of loading Introduces plate analysis theory Addresses elastic instability and the buckling of columns and plates Demonstrates the concept of fatigue and stress to life-cycle calculations Explores the application of energy methods for determining deflection and stresses of structural systems Highlights the numerical methods and finite element techniques most commonly used for the calculation of stress Presents stress analysis methods for composite laminates Explains fastener and joint connection analysis theory Provides MathCAD® sample simulation codes that can be used for fast and reliable stress analysis Essentials of Mechanical Stress Analysis is a quintessential guide detailing topics related to stress and structural analysis for practicing stress analysts in mechanical, aerospace, civil, and materials engineering fields and serves as a reference for higher-level undergraduates and graduate students.



Energy Conversion Second Edition

Energy Conversion  Second Edition Author D. Yogi Goswami
ISBN-10 9781315356624
Release 2017-07-06
Pages 1193
Download Link Click Here

This handbook surveys the range of methods and fuel types used in generating energy for industry, transportation, and heating and cooling of buildings. Solar, wind, biomass, nuclear, geothermal, ocean and fossil fuels are discussed and compared, and the thermodynamics of energy conversion is explained. Appendices are provided with fully updated data. Thoroughly revised, this second edition surveys the latest advances in energy conversion from a wide variety of currently available energy sources. It describes energy sources such as fossil fuels, biomass (including refuse-derived biomass fuels), nuclear, solar radiation, wind, geothermal, and ocean, then provides the terminology and units used for each energy resource and their equivalence. It includes an overview of the steam power cycles, gas turbines, internal combustion engines, hydraulic turbines, Stirling engines, advanced fossil fuel power systems, and combined-cycle power plants. It outlines the development, current use, and future of nuclear power.



Energy Efficient Electrical Systems for Buildings

Energy Efficient Electrical Systems for Buildings Author Moncef Krarti
ISBN-10 9781482258349
Release 2017-03-03
Pages 512
Download Link Click Here

Energy-Efficient Electrical Systems for Buildings offers a systematic and practical analysis and design approaches for electrical distribution and utilization systems in buildings. In addition to meeting the minimal safety requirements set by the National Electrical Code (NEC), the design approach consider the life-cycle cost analysis of designing energy efficient electrical distribution systems as well as integrating renewable energy technologies into both residential and commercial buildings. The book first provides a general overview of basic power systems commonly available in buildings. Then, detailed discussions of various components of typical building electrical distribution system are outlined through several chapters including transformers, protection devices, conductors and conduits, power and lighting panels, and motor control centers. The book includes several illustrations and numerous examples and analysis exercises are included, along with detailed design examples.



Nuclear Engineering Handbook Second Edition

Nuclear Engineering Handbook  Second Edition Author Kenneth D. Kok
ISBN-10 9781482215939
Release 2016-10-03
Pages 978
Download Link Click Here

Building upon the success of the first edition, the Nuclear Engineering Handbook, Second Edition, provides a comprehensive, up-to-date overview of nuclear power engineering. Consisting of chapters written by leading experts, this volume spans a wide range of topics in the areas of nuclear power reactor design and operation, nuclear fuel cycles, and radiation detection. Plant safety issues are addressed, and the economics of nuclear power generation in the 21st century are presented. The Second Edition also includes full coverage of Generation IV reactor designs, and new information on MRS technologies, small modular reactors, and fast reactors.



A Dictionary of Mechanical Engineering

A Dictionary of Mechanical Engineering Author Anthony G. Atkins
ISBN-10 9780199587438
Release 2013-04-25
Pages 428
Download Link Click Here

A Dictionary of Mechanical Engineering is one of the latest additions to the market leading Oxford Paperback Reference series. In over 8,500 clear and concise alphabetical entries, and with many helpful line drawings, it provides definitions and explanations for mechanical engineering terms in the core areas of design, stress analysis, dynamics and vibrations, thermodynamics, and fluid mechanics. Topics covered include heat transfer, combustion, control, lubrication, robotics, instrumentation, and measurement. Where relevant, the dictionary also touches on related subject areas such as acoustics, bioengineering, chemical engineering, civil engineering, aeronautical engineering, environmental engineering, and materials science. To expand its coverage, the dictionary also lists useful entry-level web links which are regularly updated on a dedicated companion website of the dictionary. Extensively cross-referenced, this excellent new volume is the most comprehensive and authoritative dictionary of its kind. It is an essential reference for students of mechanical engineering and for anyone with an interest in the subject.



Engineering Education

Engineering Education Author
ISBN-10 UVA:X001425287
Release 1979
Pages
Download Link Click Here

Engineering Education has been writing in one form or another for most of life. You can find so many inspiration from Engineering Education also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Engineering Education book for free.



Mechanics of Materials Laboratory Course

Mechanics of Materials Laboratory Course Author Ghatu Subhash
ISBN-10 9781681733340
Release 2018-04-30
Pages 226
Download Link Click Here

This book is designed to provide lecture notes (theory) and experimental design of major concepts typically taught in most Mechanics of Materials courses in a sophomore- or junior-level Mechanical or Civil Engineering curriculum. Several essential concepts that engineers encounter in practice, such as statistical data treatment, uncertainty analysis, and Monte Carlo simulations, are incorporated into the experiments where applicable, and will become integral to each laboratory assignment. Use of common strain (stress) measurement techniques, such as strain gages, are emphasized. Application of basic electrical circuits, such as Wheatstone bridge for strain measurement, and use of load cells, accelerometers, etc., are employed in experiments. Stress analysis under commonly applied loads such as axial loading (compression and tension), shear loading, flexural loading (cantilever and four-point bending), impact loading, adhesive strength, creep, etc., are covered. LabVIEW software with relevant data acquisition (DAQ) system is used for all experiments. Two final projects each spanning 2‒3 weeks are included: (i) flexural loading with stress intensity factor determination and (ii) dynamic stress wave propagation in a slender rod and determination of the stress‒strain curves at high strain rates. The book provides theoretical concepts that are pertinent to each laboratory experiment and prelab assignment that a student should complete to prepare for the laboratory. Instructions for securing off-the-shelf components to design each experiment and their assembly (with figures) are provided. Calibration procedure is emphasized whenever students assemble components or design experiments. Detailed instructions for conducting experiments and table format for data gathering are provided. Each lab assignment has a set of questions to be answered upon completion of experiment and data analysis. Lecture notes provide detailed instructions on how to use LabVIEW software for data gathering during the experiment and conduct data analysis.



Structural and Stress Analysis

Structural and Stress Analysis Author Jianqiao Ye
ISBN-10 9781482220346
Release 2015-12-02
Pages 261
Download Link Click Here

New Edition Now Covers Thin Plates, Plastic Deformation, Dynamics and Vibration Structural and stress analysis is a core topic in a range of engineering disciplines – from structural engineering through to mechanical and aeronautical engineering and materials science. Structural and Stress Analysis: Theories, Tutorials and Examples, Second Edition provides and supports a conceptual understanding of the theories and formulae, and focuses on the basic principles rather than on the formulae and the solution procedures. It emphasizes problem solving through a structured series of tutorials and problems which build up students’ understanding and encourage both numerical and conceptual approaches. It stands apart from other texts which set out rigorous mathematic derivations of formulae followed by worked examples and questions for practice. Students need to be capable of not only solving a structural problem using formulas, but also of understanding their solutions in practical and physical terms. Notwithstanding, the book covers a good range of topics: tension and compression; shear; torsion; bending, properties of cross-sections; shear force and bending moment diagrams; stresses in beams; deflection of beams; complex stresses and theories of elastic failure; energy methods; statically indeterminate systems; and structural instability. The new edition includes more topics, such as plastic deformation, dynamics and introduction to the thin plate theory, which are essential when students start their design courses. Structural and Stress Analysis: Theories, Tutorials and Examples, Second Edition not only suits undergraduates but is useful for professional engineers who want to get a good grasp of the basic concepts of stress analysis.



Fundamentals of Structural Mechanics and Analysis

Fundamentals of Structural Mechanics and Analysis Author
ISBN-10 9788120342361
Release 2011
Pages 906
Download Link Click Here

This book is a comprehensive presentation of the fundamental aspects of structural mechanics and analysis. It aims to help develop in the students the ability to analyze structures in a simple and logical manner. The major thrust in this book is on energy principles. The text, organized into sixteen chapters, covers the entire syllabus of structural analysis usually prescribed in the undergraduate level civil engineering programme and covered in two courses. The first eight chapters deal with the basic techniques for analysis, based on classical methods, of common determinate structural elements and simple structures. The following eight chapters cover the procedures for analysis of indeterminate structures, with emphasis on the use of modern matrix methods such as flexibility and stiffness methods, including the finite element techniques. Primarily designed as a textbook for undergraduate students of civil engineering, the book will also prove immensely useful for professionals engaged in structural design and engineering.



Statics and Mechanics of Materials

Statics and Mechanics of Materials Author Barry J. Goodno
ISBN-10 9781337517324
Release 2018-01-01
Pages 1184
Download Link Click Here

Master two essential subjects in engineering mechanics--statics and mechanics of materials--with the rigorous, complete, and integrated treatment found in STATICS AND MECHANICS OF MATERIALS. This book helps readers establish a strong foundation for further study in mechanics that is essential for mechanical, structural, civil, biomedical, petroleum, nuclear, aeronautical, and aerospace engineers. The authors present numerous practical problems based on real structures, using state-of-the-art graphics, photographs, and detailed drawings of free-body diagrams. All example problems and end-of-chapter problem follow a comprehensive, organized, and systematic Four-Step Problem-Solving Approach to help readers strengthen important problem-solving skills and gain new insight into methods for dissecting and solving problems. The free website also contains nearly 200 FE-type review problems to help prepare for success on the FE Exams. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.



Fundamentals of Finite Element Analysis

Fundamentals of Finite Element Analysis Author Ioannis Koutromanos
ISBN-10 9781119260080
Release 2018-03-05
Pages 712
Download Link Click Here

An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis.



The Finite Element Method

The Finite Element Method Author Zhu
ISBN-10 9781119107330
Release 2018-03-12
Pages 872
Download Link Click Here

A comprehensive review of the Finite Element Method (FEM), this book provides the fundamentals together with a wide range of applications in civil, mechanical and aeronautical engineering. It addresses both the theoretical and numerical implementation aspects of the FEM, providing examples in several important topics such as solid mechanics, fluid mechanics and heat transfer, appealing to a wide range of engineering disciplines. Written by a renowned author and academician with the Chinese Academy of Engineering, The Finite Element Method would appeal to researchers looking to understand how the fundamentals of the FEM can be applied in other disciplines. Researchers and graduate students studying hydraulic, mechanical and civil engineering will find it a practical reference text.



Aerospace Engineering e Mega Reference

Aerospace Engineering e Mega Reference Author Mike Tooley
ISBN-10 9781856175760
Release 2009-03-23
Pages 704
Download Link Click Here

A one-stop Desk Reference, for engineers involved in all aspects of aerospace; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the field. Material covers a broad topic range from Structural Components of Aircraft, Design and Airworthiness to Aerodynamics and Modelling * A fully searchable Mega Reference Ebook, providing all the essential material needed by Aerospace Engineers on a day-to-day basis. * Fundamentals, key techniques, engineering best practice and rules-of-thumb together in one quick-reference. * Over 2,500 pages of reference material, including over 1,500 pages not included in the print edition



Mechanics of Structures

Mechanics of Structures Author Walter Wunderlich
ISBN-10 9781420041835
Release 2002-12-26
Pages 912
Download Link Click Here

Resoundingly popular in its first edition, the second edition of Mechanics of Structures: Variational and Computational Methods promises to be even more so, with broader coverage, expanded discussions, and a streamlined presentation. The authors begin by describing the behavior of deformable solids through the differential equations for the strength of materials and the theory of elasticity. They next introduce variational principles, including mixed or generalized principles, and derive integral forms of the governing equations. Discussions then move to computational methods, including the finite element method, and these are developed to solve the differential and integral equations. New in the second edition: A one-dimensional introduction to the finite element method, complete with illustrations of numerical mesh refinement Expansion of the use of Galerkin's method. Discussion of recent developments in the theory of bending and torsion of thin-walled beams. An appendix summarizing the fundamental equations in differential and variational form Completely new treatment of stability, including detailed examples Discussion of the principal values of geometric properties and stresses Additional exercises As a textbook or as a reference, Mechanics of Structures builds a unified, variational foundation for structure mechanics, which in turn forms the basis for the computational solid mechanics so essential to modern engineering.



Elastoplasticity Theory

Elastoplasticity Theory Author Vlado A. Lubarda
ISBN-10 9781420040784
Release 2001-07-16
Pages 648
Download Link Click Here

Understanding the elastoplastic deformation of metals and geomaterials, including the constitutive description of the materials and analysis of structure undergoing plastic deformation, is an essential part of the background required by mechanical, civil, and geotechnical engineers as well as materials scientists. However, most books address the subject at a introductory level and within the infinitesimal strain context. Elastoplasticity Theory takes a different approach in an advanced treatment presented entirely within the framework of finite deformation. This comprehensive, self-contained text includes an introduction to nonlinear continuum mechanics and nonlinear elasticity. In addition to in-depth analysis of the mathematical and physical theories of plasticity, it furnishes an up-to-date look at contemporary topics, such as plastic stability and localization, monocrystalline plasticity, micro-to-macro transition, and polycrysalline plasticity models. Elastoplasticity Theory reflects recent trends and advances made in the theory of plasticity over the last four decades. It will not only help stimulate further research in the field, but will enable its readers to confidently select the appropriate constitutive models for the materials or structural members relevant to their own applications.



Thermal Stress Analysis of Composite Beams Plates and Shells

Thermal Stress Analysis of Composite Beams  Plates and Shells Author Erasmo Carrera
ISBN-10 9780124200937
Release 2016-11-25
Pages 440
Download Link Click Here

Thermal Stress Analysis of Composite Beams, Plates and Shells: Computational Modelling and Applications presents classic and advanced thermal stress topics in a cutting-edge review of this critical area, tackling subjects that have little coverage in existing resources. It includes discussions of complex problems, such as multi-layered cases using modern advanced computational and vibrational methods. Authors Carrera and Fazzolari begin with a review of the fundamentals of thermoelasticity and thermal stress analysis relating to advanced structures and the basic mechanics of beams, plates, and shells, making the book a self-contained reference. More challenging topics are then addressed, including anisotropic thermal stress structures, static and dynamic responses of coupled and uncoupled thermoelastic problems, thermal buckling, and post-buckling behavior of thermally loaded structures, and thermal effects on panel flutter phenomena, amongst others. Provides an overview of critical thermal stress theory and its relation to beams, plates, and shells, from classical concepts to the latest advanced theories Appeals to those studying thermoelasticity, thermoelastics, stress analysis, multilayered structures, computational methods, buckling, static response, and dynamic response Includes the authors' unified formulation (UF) theory, along with cutting-edge topics that receive little coverage in other references Covers metallic and composite structures, including a complete analysis and sample problems of layered structures, considering both mesh and meshless methods Presents a valuable resource for those working on thermal stress problems in mechanical, civil, and aerospace engineering settings



Fundamentals of Structural Stability

Fundamentals of Structural Stability Author George J. Simitses
ISBN-10 9780750678759
Release 2006
Pages 389
Download Link Click Here

An understanable introduction to the theory of structural stability, useful for a wide variety of engineering disciplines, including mechanical, civil and aerospace.