**Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.**

Author | David S. Richeson | |

ISBN-10 | 1400838568 | |

Release | 2012-03-08 | |

Pages | 336 | |

Download Link | Click Here |

Leonhard Euler's polyhedron formula describes the structure of many objects--from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2. David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and how twentieth-century mathematicians discovered that every shape has its own Euler's formula. Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast. |

Author | David S. Richeson | |

ISBN-10 | 0691126771 | |

Release | 2008 | |

Pages | 317 | |

Download Link | Click Here |

Leonhard Euler's polyhedron formula describes the structure of many objects--from soccer balls and gemstones to giant all-carbon molecules. "Euler's Gem" tells the illuminating story of this indispensable mathematical idea. Line drawings and tables throughout. |

Author | David S. Richeson | |

ISBN-10 | 9780691154572 | |

Release | 2008-09-08 | |

Pages | 317 | |

Download Link | Click Here |

Leonhard Euler's polyhedron formula describes the structure of many objects--from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2. David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and how twentieth-century mathematicians discovered that every shape has its own Euler's formula. Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast. |

Author | Daniel Pedoe | |

ISBN-10 | 0486229491 | |

Release | 1958 | |

Pages | 143 | |

Download Link | Click Here |

Collects mathematical games that entertain and provide an introduction to advanced study |

Author | Eli Maor | |

ISBN-10 | 9781400848331 | |

Release | 2014-01-19 | |

Pages | 208 | |

Download Link | Click Here |

If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configurations involving infinity. The result is a delightful and informative illustrated tour through the 2,500-year-old history of one of the most important branches of mathematics. |

Author | Mariana Cook | |

ISBN-10 | 9781400832880 | |

Release | 2013-04-18 | |

Pages | 208 | |

Download Link | Click Here |

Mathematicians is a remarkable collection of ninety-two photographic portraits, featuring some of the most amazing mathematicians of our time. Acclaimed photographer Mariana Cook captures the exuberant and colorful personalities of these brilliant thinkers and the superb images are accompanied by brief autobiographical texts written by each mathematician. Together, the photographs and words illuminate a diverse group of men and women dedicated to the absorbing pursuit of mathematics. The compelling black-and-white portraits introduce readers to mathematicians who are young and old, fathers and daughters, and husbands and wives. They include Fields Medal winners, those at the beginning of major careers, and those who are long-established celebrities in the discipline. Their candid personal essays reveal unique and wide-ranging thoughts, opinions, and humor, as the mathematicians discuss how they became interested in mathematics, why they love the subject, how they remain motivated in the face of mathematical challenges, and how their greatest contributions have paved new directions for future generations. Mathematicians in the book include David Blackwell, Henri Cartan, John Conway, Pierre Deligne, Timothy Gowers, Frances Kirwan, Peter Lax, William Massey, John Milnor, Cathleen Morawetz, John Nash, Karen Uhlenbeck, and many others. Conveying the beauty and joy of mathematics to those both within and outside the field, this photographic collection is an inspirational tribute to mathematicians everywhere. |

Author | Peter Hilton | |

ISBN-10 | 9781139489072 | |

Release | 2010-07-22 | |

Pages | ||

Download Link | Click Here |

This easy-to-read 2010 book demonstrates how a simple geometric idea reveals fascinating connections and results in number theory, the mathematics of polyhedra, combinatorial geometry, and group theory. Using a systematic paper-folding procedure it is possible to construct a regular polygon with any number of sides. This remarkable algorithm has led to interesting proofs of certain results in number theory, has been used to answer combinatorial questions involving partitions of space, and has enabled the authors to obtain the formula for the volume of a regular tetrahedron in around three steps, using nothing more complicated than basic arithmetic and the most elementary plane geometry. All of these ideas, and more, reveal the beauty of mathematics and the interconnectedness of its various branches. Detailed instructions, including clear illustrations, enable the reader to gain hands-on experience constructing these models and to discover for themselves the patterns and relationships they unearth. |

Author | Mikio Nakahara | |

ISBN-10 | 0750306068 | |

Release | 2003-06-04 | |

Pages | 596 | |

Download Link | Click Here |

Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics. |

Author | Ehrhard Behrends | |

ISBN-10 | 9780821843482 | |

Release | 2008 | |

Pages | 380 | |

Download Link | Click Here |

How much math can you cover in five minutes? Quite a bit, if you have a good guide. In this collection of one hundred short essays, Ehrhard Behrends offers a tour through contemporary and everyday mathematics. The topics range from pure mathematics to applications of mathematics to observations about the mathematics that surrounds us in daily life. Here, we read about the parable of grains of rice on a chessboard, the mathematics of the lottery, music and mathematics, intriguing paradoxes, the concept of infinity, the Poincare conjecture, quantum computers, and plenty more. Anyone who regularly reads the science section of a newspaper or magazine will find much to enjoy in Five-Minute Mathematics. Behrends makes very few assumptions about his readers, other than general curiosity and some familiarity with high school mathematics. The vignettes originally appeared in the author's newspaper column. They have been extensively revised and expanded, and provided with attractive illustrations and photographs. |

Author | Dana Mackenzie | |

ISBN-10 | 9781400841684 | |

Release | 2012-04-09 | |

Pages | 224 | |

Download Link | Click Here |

Most popular books about science, and even about mathematics, tiptoe around equations as if they were something to be hidden from the reader's tender eyes. Dana Mackenzie starts from the opposite premise: He celebrates equations. No history of art would be complete without pictures. Why, then, should a history of mathematics--the universal language of science--keep the masterpieces of the subject hidden behind a veil? The Universe in Zero Words tells the history of twenty-four great and beautiful equations that have shaped mathematics, science, and society--from the elementary (1+1=2) to the sophisticated (the Black-Scholes formula for financial derivatives), and from the famous (E=mc2) to the arcane (Hamilton's quaternion equations). Mackenzie, who has been called "a popular-science ace" by Booklist magazine, lucidly explains what each equation means, who discovered it (and how), and how it has affected our lives. Illustrated in color throughout, the book tells the human and often-surprising stories behind the invention or discovery of the equations, from how a bad cigar changed the course of quantum mechanics to why whales (if they could communicate with us) would teach us a totally different concept of geometry. At the same time, the book shows why these equations have something timeless to say about the universe, and how they do it with an economy (zero words) that no other form of human expression can match. The Universe in Zero Words is the ultimate introduction and guide to equations that have changed the world. |

Author | Jennifer Beineke | |

ISBN-10 | 9781400889136 | |

Release | 2017-09-05 | |

Pages | 408 | |

Download Link | Click Here |

The history of mathematics is filled with major breakthroughs resulting from solutions to recreational problems. Problems of interest to gamblers led to the modern theory of probability, for example, and surreal numbers were inspired by the game of Go. Yet even with such groundbreaking findings and a wealth of popular-level books, research in recreational mathematics has often been neglected. The Mathematics of Various Entertaining Subjects now returns with a brand-new compilation of fascinating problems and solutions in recreational mathematics. This latest volume gathers together the top experts in recreational math and presents a compelling look at board games, card games, dice, toys, computer games, and much more. The book is divided into five parts: puzzles and brainteasers, geometry and topology, graph theory, games of chance, and computational complexity. Readers will discover what origami, roulette wheels, and even the game of Trouble can teach about math. Essays contain new results, and the contributors include short expositions on their topic’s background, providing a framework for understanding the relationship between serious mathematics and recreational games. Mathematical areas explored include combinatorics, logic, graph theory, linear algebra, geometry, topology, computer science, operations research, probability, game theory, and music theory. Investigating an eclectic mix of games and puzzles, The Mathematics of Various Entertaining Subjects is sure to entertain, challenge, and inspire academic mathematicians and avid math enthusiasts alike. |

Author | David Mumford | |

ISBN-10 | 0521352533 | |

Release | 2002-04-25 | |

Pages | 395 | |

Download Link | Click Here |

Highly illustrated realization of infinitely reflected images related to fractals, chaos and symmetry. |

Author | Brian Hayes | |

ISBN-10 | 1429938579 | |

Release | 2008-04-01 | |

Pages | 288 | |

Download Link | Click Here |

An Award-Winning Essayist Plies His Craft Brian Hayes is one of the most accomplished essayists active today—a claim supported not only by his prolific and continuing high-quality output but also by such honors as the National Magazine Award for his commemorative Y2K essay titled "Clock of Ages," published in the November/December 1999 issue of The Sciences magazine. (The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces—including "Clock of Ages"—embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay. |

Author | John Derbyshire | |

ISBN-10 | 9780309085496 | |

Release | 2003-04-15 | |

Pages | 448 | |

Download Link | Click Here |

In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark - a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic - defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark - the Riemann Hypothesis - that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows - subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many - the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof - and those who have been consumed by it. |

Author | Paul J. Nahin | |

ISBN-10 | 1400838479 | |

Release | 2011-04-25 | |

Pages | 416 | |

Download Link | Click Here |

In the mid-eighteenth century, Swiss-born mathematician Leonhard Euler developed a formula so innovative and complex that it continues to inspire research, discussion, and even the occasional limerick. Dr. Euler's Fabulous Formula shares the fascinating story of this groundbreaking formula—long regarded as the gold standard for mathematical beauty—and shows why it still lies at the heart of complex number theory. In some ways a sequel to Nahin's An Imaginary Tale, this book examines the many applications of complex numbers alongside intriguing stories from the history of mathematics. Dr. Euler's Fabulous Formula is accessible to any reader familiar with calculus and differential equations, and promises to inspire mathematicians for years to come. |

Author | Donal O'Shea | |

ISBN-10 | 0802718949 | |

Release | 2009-05-26 | |

Pages | 304 | |

Download Link | Click Here |

Henri Poincaré was one of the greatest mathematicians of the late nineteenth and early twentieth century. He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincaré conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point. Poincaré's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award. In telling the vibrant story of The Poincaré Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture. |

Author | Robert P. Crease | |

ISBN-10 | 9780393345766 | |

Release | 2010-01-18 | |

Pages | 320 | |

Download Link | Click Here |

"Any reader who aspires to be scientifically literate will find this a good starting place." —Publishers Weekly While we may be familiar with some of science’s greatest equations, we may not know that each and every equation emerged not in "Eureka!" moments but in years of cultural developments and scientific knowledge. With vignettes full of humor, drama, and eccentricity, philosopher and science historian Robert P. Crease shares the stories behind ten of history’s greatest equations, from the "first equation," 1 + 1 = 2, which promises a rational, well-ordered world, to Heisenberg’s uncertainty principle, which reveals the limitations of human knowledge. For every equation, Crease provides a brief account of who discovered it, what dissatisfactions lay behind its discovery, and what the equation says about the nature of our world. |