Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Euler s Gem

Euler s Gem Author David S. Richeson
ISBN-10 1400838568
Release 2012-03-08
Pages 336
Download Link Click Here

Leonhard Euler's polyhedron formula describes the structure of many objects--from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2. David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and how twentieth-century mathematicians discovered that every shape has its own Euler's formula. Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast.

Euler s Gem

Euler s Gem Author David S. Richeson
ISBN-10 0691126771
Release 2008
Pages 317
Download Link Click Here

Leonhard Euler's polyhedron formula describes the structure of many objects--from soccer balls and gemstones to giant all-carbon molecules. "Euler's Gem" tells the illuminating story of this indispensable mathematical idea. Line drawings and tables throughout.

Dr Euler s Fabulous Formula

Dr  Euler s Fabulous Formula Author Paul J. Nahin
ISBN-10 1400838479
Release 2011-04-25
Pages 416
Download Link Click Here

In the mid-eighteenth century, Swiss-born mathematician Leonhard Euler developed a formula so innovative and complex that it continues to inspire research, discussion, and even the occasional limerick. Dr. Euler's Fabulous Formula shares the fascinating story of this groundbreaking formula—long regarded as the gold standard for mathematical beauty—and shows why it still lies at the heart of complex number theory. In some ways a sequel to Nahin's An Imaginary Tale, this book examines the many applications of complex numbers alongside intriguing stories from the history of mathematics. Dr. Euler's Fabulous Formula is accessible to any reader familiar with calculus and differential equations, and promises to inspire mathematicians for years to come.


Mathematicians Author Mariana Cook
ISBN-10 9781400832880
Release 2013-04-18
Pages 208
Download Link Click Here

Mathematicians is a remarkable collection of ninety-two photographic portraits, featuring some of the most amazing mathematicians of our time. Acclaimed photographer Mariana Cook captures the exuberant and colorful personalities of these brilliant thinkers and the superb images are accompanied by brief autobiographical texts written by each mathematician. Together, the photographs and words illuminate a diverse group of men and women dedicated to the absorbing pursuit of mathematics. The compelling black-and-white portraits introduce readers to mathematicians who are young and old, fathers and daughters, and husbands and wives. They include Fields Medal winners, those at the beginning of major careers, and those who are long-established celebrities in the discipline. Their candid personal essays reveal unique and wide-ranging thoughts, opinions, and humor, as the mathematicians discuss how they became interested in mathematics, why they love the subject, how they remain motivated in the face of mathematical challenges, and how their greatest contributions have paved new directions for future generations. Mathematicians in the book include David Blackwell, Henri Cartan, John Conway, Pierre Deligne, Timothy Gowers, Frances Kirwan, Peter Lax, William Massey, John Milnor, Cathleen Morawetz, John Nash, Karen Uhlenbeck, and many others. Conveying the beauty and joy of mathematics to those both within and outside the field, this photographic collection is an inspirational tribute to mathematicians everywhere.

Group Theory in the Bedroom and Other Mathematical Diversions

Group Theory in the Bedroom  and Other Mathematical Diversions Author Brian Hayes
ISBN-10 1429938579
Release 2008-04-01
Pages 288
Download Link Click Here

An Award-Winning Essayist Plies His Craft Brian Hayes is one of the most accomplished essayists active today—a claim supported not only by his prolific and continuing high-quality output but also by such honors as the National Magazine Award for his commemorative Y2K essay titled "Clock of Ages," published in the November/December 1999 issue of The Sciences magazine. (The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces—including "Clock of Ages"—embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.

Five minute Mathematics

Five minute Mathematics Author Ehrhard Behrends
ISBN-10 9780821843482
Release 2008
Pages 380
Download Link Click Here

How much math can you cover in five minutes? Quite a bit, if you have a good guide. In this collection of one hundred short essays, Ehrhard Behrends offers a tour through contemporary and everyday mathematics. The topics range from pure mathematics to applications of mathematics to observations about the mathematics that surrounds us in daily life. Here, we read about the parable of grains of rice on a chessboard, the mathematics of the lottery, music and mathematics, intriguing paradoxes, the concept of infinity, the Poincare conjecture, quantum computers, and plenty more. Anyone who regularly reads the science section of a newspaper or magazine will find much to enjoy in Five-Minute Mathematics. Behrends makes very few assumptions about his readers, other than general curiosity and some familiarity with high school mathematics. The vignettes originally appeared in the author's newspaper column. They have been extensively revised and expanded, and provided with attractive illustrations and photographs.

Zome Geometry

Zome Geometry Author George W. Hart
ISBN-10 1559533854
Release 2001-01-01
Pages 265
Download Link Click Here

Zome Geometry has been writing in one form or another for most of life. You can find so many inspiration from Zome Geometry also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Zome Geometry book for free.

The Irrationals

The Irrationals Author Julian Havil
ISBN-10 9781400841707
Release 2012-07-22
Pages 312
Download Link Click Here

The ancient Greeks discovered them, but it wasn't until the nineteenth century that irrational numbers were properly understood and rigorously defined, and even today not all their mysteries have been revealed. In The Irrationals, the first popular and comprehensive book on the subject, Julian Havil tells the story of irrational numbers and the mathematicians who have tackled their challenges, from antiquity to the twenty-first century. Along the way, he explains why irrational numbers are surprisingly difficult to define—and why so many questions still surround them. Fascinating and illuminating, this is a book for everyone who loves math and the history behind it.

The Poincare Conjecture

The Poincare Conjecture Author Donal O'Shea
ISBN-10 0802718949
Release 2009-05-26
Pages 304
Download Link Click Here

Henri Poincaré was one of the greatest mathematicians of the late nineteenth and early twentieth century. He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincaré conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point. Poincaré's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award. In telling the vibrant story of The Poincaré Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.

Elementary Geometry

Elementary Geometry Author Ilka Agricola
ISBN-10 9780821843475
Release 2008
Pages 243
Download Link Click Here

Elementary geometry provides the foundation of modern geometry. For the most part, the standard introductions end at the formal Euclidean geometry of high school. Agricola and Friedrich revisit geometry, but from the higher viewpoint of university mathematics. Plane geometry is developed from its basic objects and their properties and then moves to conics and basic solids, including the Platonic solids and a proof of Euler's polytope formula. Particular care is taken to explain symmetry groups, including the description of ornaments and the classification of isometries by their number of fixed points. Complex numbers are introduced to provide an alternative, very elegant approach to plane geometry. The authors then treat spherical and hyperbolic geometries, with special emphasis on their basic geometric properties. This largely self-contained book provides a much deeper understanding of familiar topics, as well as an introduction to new topics that complete the picture of two-dimensional geometries. For undergraduate mathematics students the book will be an excellent introduction to an advanced point of view on geometry. For mathematics teachers it will be a valuable reference and a source book for topics for projects. The book contains over 100 figures and scores of exercises. It is suitable for a one-semester course in geometry for undergraduates, particularly for mathematics majors and future secondary school teachers.

The Calculus Gallery

The Calculus Gallery Author William Dunham
ISBN-10 9781400866793
Release 2015-01-26
Pages 256
Download Link Click Here

More than three centuries after its creation, calculus remains a dazzling intellectual achievement and the gateway into higher mathematics. This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth--mathematicians whose achievements are comparable to those of Bach in music or Shakespeare in literature. William Dunham lucidly presents the definitions, theorems, and proofs. "Students of literature read Shakespeare; students of music listen to Bach," he writes. But this tradition of studying the major works of the "masters" is, if not wholly absent, certainly uncommon in mathematics. This book seeks to redress that situation. Like a great museum, The Calculus Gallery is filled with masterpieces, among which are Bernoulli's early attack upon the harmonic series (1689), Euler's brilliant approximation of pi (1779), Cauchy's classic proof of the fundamental theorem of calculus (1823), Weierstrass's mind-boggling counterexample (1872), and Baire's original "category theorem" (1899). Collectively, these selections document the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinching--a story of genius triumphing over some of the toughest, most subtle problems imaginable. Anyone who has studied and enjoyed calculus will discover in these pages the sheer excitement each mathematician must have felt when pushing into the unknown. In touring The Calculus Gallery, we can see how it all came to be.

The Mathematics of Various Entertaining Subjects

The Mathematics of Various Entertaining Subjects Author Jennifer Beineke
ISBN-10 9781400889136
Release 2017-09-05
Pages 408
Download Link Click Here

The history of mathematics is filled with major breakthroughs resulting from solutions to recreational problems. Problems of interest to gamblers led to the modern theory of probability, for example, and surreal numbers were inspired by the game of Go. Yet even with such groundbreaking findings and a wealth of popular-level books, research in recreational mathematics has often been neglected. The Mathematics of Various Entertaining Subjects now returns with a brand-new compilation of fascinating problems and solutions in recreational mathematics. This latest volume gathers together the top experts in recreational math and presents a compelling look at board games, card games, dice, toys, computer games, and much more. The book is divided into five parts: puzzles and brainteasers, geometry and topology, graph theory, games of chance, and computational complexity. Readers will discover what origami, roulette wheels, and even the game of Trouble can teach about math. Essays contain new results, and the contributors include short expositions on their topic’s background, providing a framework for understanding the relationship between serious mathematics and recreational games. Mathematical areas explored include combinatorics, logic, graph theory, linear algebra, geometry, topology, computer science, operations research, probability, game theory, and music theory. Investigating an eclectic mix of games and puzzles, The Mathematics of Various Entertaining Subjects is sure to entertain, challenge, and inspire academic mathematicians and avid math enthusiasts alike.

Topological Insulators and Topological Superconductors

Topological Insulators and Topological Superconductors Author B. Andrei Bernevig
ISBN-10 9781400846733
Release 2013-04-07
Pages 264
Download Link Click Here

This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.

Physics Geometry and Topology

Physics  Geometry and Topology Author H.C. Lee
ISBN-10 9781461538028
Release 2012-12-06
Pages 681
Download Link Click Here

The Banff NATO Summer School was held August 14-25, 1989 at the Banff Cen tre, Banff, Albert, Canada. It was a combination of two venues: a summer school in the annual series of Summer School in Theoretical Physics spon sored by the Theoretical Physics Division, Canadian Association of Physi cists, and a NATO Advanced Study Institute. The Organizing Committee for the present school was composed of G. Kunstatter (University of Winnipeg), H.C. Lee (Chalk River Laboratories and University of Western Ontario), R. Kobes (University of Winnipeg), D.l. Toms (University of Newcastle Upon Tyne) and Y.S. Wu (University of Utah). Thanks to the group of lecturers (see Contents) and the timeliness of the courses given, the school, entitled PHYSICS, GEOMETRY AND TOPOLOGY, was popular from the very outset. The number of applications outstripped the 90 places of accommodation reserved at the Banff Centre soon after the school was announced. As the eventual total number of participants was increased to 170, it was still necessary to tum away many deserving applicants. In accordance with the spirit of the school, the geometrical and topologi cal properties in each of the wide ranging topics covered by the lectures were emphasized. A recurring theme in a number of the lectures is the Yang-Baxter relation which characterizes a very large class of integrable systems including: many state models, two-dimensional conformal field theory, quantum field theory and quantum gravity in 2 + I dimensions.

The Great Equations Breakthroughs in Science from Pythagoras to Heisenberg

The Great Equations  Breakthroughs in Science from Pythagoras to Heisenberg Author Robert P. Crease
ISBN-10 9780393337938
Release 2010-01-18
Pages 320
Download Link Click Here

Shares behind-the-scenes stories for ten of the most significant equations in human history, covering a range of topics, from Feynman's statement about Maxwell's pivotal electromagnetic equations and the influence of Newton's law of gravitation to the reason Euler's formula has been called "God's equation" and Heisenberg's uncertainty principle. 20,000 first printing.

Prime Obsession

Prime Obsession Author John Derbyshire
ISBN-10 9780309141253
Release 2003-04-15
Pages 446
Download Link Click Here

In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.

Is God a Mathematician

Is God a Mathematician Author Mario Livio
ISBN-10 1416594434
Release 2011-02-22
Pages 320
Download Link Click Here

Bestselling author and astrophysicist Mario Livio examines the lives and theories of history’s greatest mathematicians to ask how—if mathematics is an abstract construction of the human mind—it can so perfectly explain the physical world. Nobel Laureate Eugene Wigner once wondered about “the unreasonable effectiveness of mathematics” in the formulation of the laws of nature. Is God a Mathematician? investigates why mathematics is as powerful as it is. From ancient times to the present, scientists and philosophers have marveled at how such a seemingly abstract discipline could so perfectly explain the natural world. More than that—mathematics has often made predictions, for example, about subatomic particles or cosmic phenomena that were unknown at the time, but later were proven to be true. Is mathematics ultimately invented or discovered? If, as Einstein insisted, mathematics is “a product of human thought that is independent of experience,” how can it so accurately describe and even predict the world around us? Physicist and author Mario Livio brilliantly explores mathematical ideas from Pythagoras to the present day as he shows us how intriguing questions and ingenious answers have led to ever deeper insights into our world. This fascinating book will interest anyone curious about the human mind, the scientific world, and the relationship between them.