Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Explorations in Quantum Computing

Explorations in Quantum Computing Author Colin P. Williams
ISBN-10 1846288878
Release 2010-12-07
Pages 717
Download Link Click Here

By the year 2020, the basic memory components of a computer will be the size of individual atoms. At such scales, the current theory of computation will become invalid. "Quantum computing" is reinventing the foundations of computer science and information theory in a way that is consistent with quantum physics - the most accurate model of reality currently known. Remarkably, this theory predicts that quantum computers can perform certain tasks breathtakingly faster than classical computers – and, better yet, can accomplish mind-boggling feats such as teleporting information, breaking supposedly "unbreakable" codes, generating true random numbers, and communicating with messages that betray the presence of eavesdropping. This widely anticipated second edition of Explorations in Quantum Computing explains these burgeoning developments in simple terms, and describes the key technological hurdles that must be overcome to make quantum computers a reality. This easy-to-read, time-tested, and comprehensive textbook provides a fresh perspective on the capabilities of quantum computers, and supplies readers with the tools necessary to make their own foray into this exciting field. Topics and features: concludes each chapter with exercises and a summary of the material covered; provides an introduction to the basic mathematical formalism of quantum computing, and the quantum effects that can be harnessed for non-classical computation; discusses the concepts of quantum gates, entangling power, quantum circuits, quantum Fourier, wavelet, and cosine transforms, and quantum universality, computability, and complexity; examines the potential applications of quantum computers in areas such as search, code-breaking, solving NP-Complete problems, quantum simulation, quantum chemistry, and mathematics; investigates the uses of quantum information, including quantum teleportation, superdense coding, quantum data compression, quantum cloning, quantum negation, and quantum cryptography; reviews the advancements made towards practical quantum computers, covering developments in quantum error correction and avoidance, and alternative models of quantum computation. This text/reference is ideal for anyone wishing to learn more about this incredible, perhaps "ultimate," computer revolution. Dr. Colin P. Williams is Program Manager for Advanced Computing Paradigms at the NASA Jet Propulsion Laboratory, California Institute of Technology, and CEO of Xtreme Energetics, Inc. an advanced solar energy company. Dr. Williams has taught quantum computing and quantum information theory as an acting Associate Professor of Computer Science at Stanford University. He has spent over a decade inspiring and leading high technology teams and building business relationships with and Silicon Valley companies. Today his interests include terrestrial and Space-based power generation, quantum computing, cognitive computing, computational material design, visualization, artificial intelligence, evolutionary computing, and remote olfaction. He was formerly a Research Scientist at Xerox PARC and a Research Assistant to Prof. Stephen W. Hawking, Cambridge University.



Explorations in Quantum Computing

Explorations in Quantum Computing Author Colin P. Williams
ISBN-10 1849962499
Release 2011-03-30
Pages 740
Download Link Click Here

Explorations in Quantum Computing has been writing in one form or another for most of life. You can find so many inspiration from Explorations in Quantum Computing also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Explorations in Quantum Computing book for free.



Explorations in Quantum Computing

Explorations in Quantum Computing Author Colin P. Williams
ISBN-10 1447168011
Release 2010-12-27
Pages 717
Download Link Click Here

By the year 2020, the basic memory components of a computer will be the size of individual atoms. At such scales, the current theory of computation will become invalid. "Quantum computing" is reinventing the foundations of computer science and information theory in a way that is consistent with quantum physics - the most accurate model of reality currently known. Remarkably, this theory predicts that quantum computers can perform certain tasks breathtakingly faster than classical computers – and, better yet, can accomplish mind-boggling feats such as teleporting information, breaking supposedly "unbreakable" codes, generating true random numbers, and communicating with messages that betray the presence of eavesdropping. This widely anticipated second edition of Explorations in Quantum Computing explains these burgeoning developments in simple terms, and describes the key technological hurdles that must be overcome to make quantum computers a reality. This easy-to-read, time-tested, and comprehensive textbook provides a fresh perspective on the capabilities of quantum computers, and supplies readers with the tools necessary to make their own foray into this exciting field. Topics and features: concludes each chapter with exercises and a summary of the material covered; provides an introduction to the basic mathematical formalism of quantum computing, and the quantum effects that can be harnessed for non-classical computation; discusses the concepts of quantum gates, entangling power, quantum circuits, quantum Fourier, wavelet, and cosine transforms, and quantum universality, computability, and complexity; examines the potential applications of quantum computers in areas such as search, code-breaking, solving NP-Complete problems, quantum simulation, quantum chemistry, and mathematics; investigates the uses of quantum information, including quantum teleportation, superdense coding, quantum data compression, quantum cloning, quantum negation, and quantum cryptography; reviews the advancements made towards practical quantum computers, covering developments in quantum error correction and avoidance, and alternative models of quantum computation. This text/reference is ideal for anyone wishing to learn more about this incredible, perhaps "ultimate," computer revolution. Dr. Colin P. Williams is Program Manager for Advanced Computing Paradigms at the NASA Jet Propulsion Laboratory, California Institute of Technology, and CEO of Xtreme Energetics, Inc. an advanced solar energy company. Dr. Williams has taught quantum computing and quantum information theory as an acting Associate Professor of Computer Science at Stanford University. He has spent over a decade inspiring and leading high technology teams and building business relationships with and Silicon Valley companies. Today his interests include terrestrial and Space-based power generation, quantum computing, cognitive computing, computational material design, visualization, artificial intelligence, evolutionary computing, and remote olfaction. He was formerly a Research Scientist at Xerox PARC and a Research Assistant to Prof. Stephen W. Hawking, Cambridge University.



More Than One Mystery

More Than One Mystery Author Mark P. Silverman
ISBN-10 9781461225041
Release 2012-12-06
Pages 212
Download Link Click Here

More Than One Mystery has been writing in one form or another for most of life. You can find so many inspiration from More Than One Mystery also informative, and entertaining. Click DOWNLOAD or Read Online button to get full More Than One Mystery book for free.



Automatic Quantum Computer Programming

Automatic Quantum Computer Programming Author Lee Spector
ISBN-10 9781402078958
Release 2006-04-18
Pages 153
Download Link Click Here

Automatic Quantum Computer Programming provides an introduction to quantum computing for non-physicists, as well as an introduction to genetic programming for non-computer-scientists. The book explores several ways in which genetic programming can support automatic quantum computer programming and presents detailed descriptions of specific techniques, along with several examples of their human-competitive performance on specific problems. Source code for the author’s QGAME quantum computer simulator is included as an appendix, and pointers to additional online resources furnish the reader with an array of tools for automatic quantum computer programming.



An Introduction to Quantum Computing

An Introduction to Quantum Computing Author Phillip Kaye
ISBN-10 9780198570004
Release 2007
Pages 274
Download Link Click Here

The authors provide an introduction to quantum computing. Aimed at advanced undergraduate and beginning graduate students in these disciplines, this text is illustrated with diagrams and exercises.



How the Hippies Saved Physics Science Counterculture and the Quantum Revival

How the Hippies Saved Physics  Science  Counterculture  and the Quantum Revival Author David Kaiser
ISBN-10 9780393082302
Release 2011-06-27
Pages 416
Download Link Click Here

“Meticulously researched and unapologetically romantic, How the Hippies Saved Physics makes the history of science fun again.”—Science In the 1970s, an eccentric group of physicists in Berkeley, California, banded together to explore the wilder side of science. Dubbing themselves the “Fundamental Fysiks Group,” they pursued an audacious, speculative approach to physics, studying quantum entanglement in terms of Eastern mysticism and psychic mind reading. As David Kaiser reveals, these unlikely heroes spun modern physics in a new direction, forcing mainstream physicists to pay attention to the strange but exciting underpinnings of quantum theory.



Topics in Advanced Quantum Mechanics

Topics in Advanced Quantum Mechanics Author Barry R. Holstein
ISBN-10 9780486499857
Release 2014-06-18
Pages 448
Download Link Click Here

This graduate-level text is based on a course in advanced quantum mechanics, taught many times at the University of Massachusetts, Amherst. Topics include propagator methods, scattering theory, charged particle interactions, alternate approximate methods, and Klein-Gordon and Dirac equations. Problems appear in the flow of the discussion, rather than at the end of chapters. 1992 edition.



Nano Quantum and Molecular Computing

Nano  Quantum and Molecular Computing Author Sandeep Kumar Shukla
ISBN-10 9781402080685
Release 2007-05-08
Pages 358
Download Link Click Here

One of the grand challenges in the nano-scopic computing era is guarantees of robustness. Robust computing system design is confronted with quantum physical, probabilistic, and even biological phenomena, and guaranteeing high reliability is much more difficult than ever before. Scaling devices down to the level of single electron operation will bring forth new challenges due to probabilistic effects and uncertainty in guaranteeing 'zero-one' based computing. Minuscule devices imply billions of devices on a single chip, which may help mitigate the challenge of uncertainty by replication and redundancy. However, such device densities will create a design and validation nightmare with the shear scale. The questions that confront computer engineers regarding the current status of nanocomputing material and the reliability of systems built from such miniscule devices, are difficult to articulate and answer. We have found a lack of resources in the confines of a single volume that at least partially attempts to answer these questions. We believe that this volume contains a large amount of research material as well as new ideas that will be very useful for some one starting research in the arena of nanocomputing, not at the device level, but the problems one would face at system level design and validation when nanoscopic physicality will be present at the device level.



Quantum Mechanics Using Maple

Quantum Mechanics Using Maple   Author Marko Horbatsch
ISBN-10 9783642795381
Release 2012-12-06
Pages 331
Download Link Click Here

Quantum Mechanics Using Maple permits the study of quantum mechanics in a novel, interactive way using the computer algebra and graphics system Maple V. Usually the physics student is distracted from understanding the concepts of modern physics by the need to master unfamiliar mathematics at the same time. In 39 guided Maple sessions the reader explores many standard quantum mechanics problems, as well as some advanced topics that introduce approximation techniques. A solid knowledge of Maple V is acquired as it applies to advanced mathematics relevant for engineering, physics, and applied mathematics. The diskette contains 39 Maple V for Windows worksheet files to reproduce all the problems presented in the text. The suggested exercises can be performed with a minimum of typing.



Explorations in Mathematical Physics

Explorations in Mathematical Physics Author Don Koks
ISBN-10 9780387309439
Release 2006-09-15
Pages 544
Download Link Click Here

Have you ever wondered why the language of modern physics centres on geometry? Or how quantum operators and Dirac brackets work? What a convolution really is? What tensors are all about? Or what field theory and lagrangians are, and why gravity is described as curvature? This book takes you on a tour of the main ideas forming the language of modern mathematical physics. Here you will meet novel approaches to concepts such as determinants and geometry, wave function evolution, statistics, signal processing, and three-dimensional rotations. You will see how the accelerated frames of special relativity tell us about gravity. On the journey, you will discover how tensor notation relates to vector calculus, how differential geometry is built on intuitive concepts, and how variational calculus leads to field theory. You will meet quantum measurement theory, along with Green functions and the art of complex integration, and finally general relativity and cosmology. The book takes a fresh approach to tensor analysis built solely on the metric and vectors, with no need for one-forms. This gives a much more geometrical and intuitive insight into vector and tensor calculus, together with general relativity, than do traditional, more abstract methods. Don Koks is a physicist at the Defence Science and Technology Organisation in Adelaide, Australia. His doctorate in quantum cosmology was obtained from the Department of Physics and Mathematical Physics at Adelaide University. Prior work at the University of Auckland specialised in applied accelerator physics, along with pure and applied mathematics.



Principles of Quantum Computation and Information

Principles of Quantum Computation and Information Author Giuliano Benenti
ISBN-10 9812388583
Release 2004
Pages 256
Download Link Click Here

Quantum computation and information is a new, rapidly developing interdisciplinary field. This book provides the reader a useful and not-too-heavy guide. It offers a simple and self-contained introduction; no previous knowledge of quantum mechanics or classical computation is required. Volume 1 may be used as a textbook for a one-semester introductory course in quantum information and computation, both for upper-level undergraduate students and for graduate students. It contains a large number of solved exercises, which are an essential complement to the text, as they will help the student to become familiar with the subject.



Quantum Computing

Quantum Computing Author Mika Hirvensalo
ISBN-10 9783662096369
Release 2013-03-14
Pages 214
Download Link Click Here

Mika Hirvensalo maps out the new multidisciplinary research area of quantum computing. The text contains an introduction to quantum computing as well as the most important recent results on the topic. The presentation is uniform and computer science-oriented. Thus, the book differs from most of the previous ones which are mainly physics-oriented. The special style of presentation makes the theory of quantum computing accessible to a larger audience. Many examples and exercises ease the understanding. In this second edition, a new chapter on quantum information has been added and numerous corrections, amendments, and extensions have been incorporated throughout the entire text.



Quantum Computing Since Democritus

Quantum Computing Since Democritus Author Scott Aaronson
ISBN-10 9780521199568
Release 2013-03-14
Pages 370
Download Link Click Here

Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.



Meeting the Universe Halfway

Meeting the Universe Halfway Author Karen Barad
ISBN-10 082233917X
Release 2007-07-11
Pages 524
Download Link Click Here

A theoretical physicist and feminist theorist, Karen Barad elaborates her theory of agential realism, a schema that is at once a new epistemology, ontology, and ethics.



Thirty Years that Shook Physics

Thirty Years that Shook Physics Author George Gamow
ISBN-10 9780486135168
Release 2012-05-11
Pages 240
Download Link Click Here

Lucid, accessible introduction to the influential theory of energy and matter features careful explanations of Dirac's anti-particles, Bohr's model of the atom, and much more. Numerous drawings. 1966 edition.



An Introduction to Quantum Computing Algorithms

An Introduction to Quantum Computing Algorithms Author Arthur O. Pittenger
ISBN-10 9781461213901
Release 2012-12-06
Pages 140
Download Link Click Here

In 1994 Peter Shor [65] published a factoring algorithm for a quantum computer that finds the prime factors of a composite integer N more efficiently than is possible with the known algorithms for a classical com puter. Since the difficulty of the factoring problem is crucial for the se curity of a public key encryption system, interest (and funding) in quan tum computing and quantum computation suddenly blossomed. Quan tum computing had arrived. The study of the role of quantum mechanics in the theory of computa tion seems to have begun in the early 1980s with the publications of Paul Benioff [6]' [7] who considered a quantum mechanical model of computers and the computation process. A related question was discussed shortly thereafter by Richard Feynman [35] who began from a different perspec tive by asking what kind of computer should be used to simulate physics. His analysis led him to the belief that with a suitable class of "quantum machines" one could imitate any quantum system.