Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Fault Tolerance Techniques for SRAM Based FPGAs

Fault Tolerance Techniques for SRAM Based FPGAs Author Fernanda Lima Kastensmidt
ISBN-10 9780387310695
Release 2007-02-01
Pages 184
Download Link Click Here

This book reviews fault-tolerance techniques for SRAM-based Field Programmable Gate Arrays (FPGAs), outlining many methods for designing fault tolerance systems. Some of these are based on new fault-tolerant architecture, and others on protecting the high-level hardware description before synthesis in the FPGA. The text helps the reader choose the best techniques project-by-project, and to compare fault tolerant techniques for programmable logic applications.



FPGAs and Parallel Architectures for Aerospace Applications

FPGAs and Parallel Architectures for Aerospace Applications Author Fernanda Kastensmidt
ISBN-10 9783319143521
Release 2015-12-07
Pages 325
Download Link Click Here

This book introduces the concepts of soft errors in FPGAs, as well as the motivation for using commercial, off-the-shelf (COTS) FPGAs in mission-critical and remote applications, such as aerospace. The authors describe the effects of radiation in FPGAs, present a large set of soft-error mitigation techniques that can be applied in these circuits, as well as methods for qualifying these circuits under radiation. Coverage includes radiation effects in FPGAs, fault-tolerant techniques for FPGAs, use of COTS FPGAs in aerospace applications, experimental data of FPGAs under radiation, FPGA embedded processors under radiation and fault injection in FPGAs. Since dedicated parallel processing architectures such as GPUs have become more desirable in aerospace applications due to high computational power, GPU analysis under radiation is also discussed.



Digital Timing Measurements

Digital Timing Measurements Author Wolfgang Maichen
ISBN-10 9780387314198
Release 2006-10-03
Pages 240
Download Link Click Here

As many circuits and applications now enter the Gigahertz frequency range, accurate digital timing measurements have become crucial in the design, verification, characterization, and application of electronic circuits. To be successful in this field an engineer needs to understand instrumentation, measurement techniques, signal integrity, jitter and timing concepts, and statistics. This book gives a compact, practice-oriented overview on all these subjects with emphasis on useable concepts and real-life guidelines.



CMOS SRAM Circuit Design and Parametric Test in Nano Scaled Technologies

CMOS SRAM Circuit Design and Parametric Test in Nano Scaled Technologies Author Andrei Pavlov
ISBN-10 9781402083631
Release 2008-06-01
Pages 194
Download Link Click Here

The monograph will be dedicated to SRAM (memory) design and test issues in nano-scaled technologies by adapting the cell design and chip design considerations to the growing process variations with associated test issues. Purpose: provide process-aware solutions for SRAM design and test challenges.



Oscillation Based Test in Mixed Signal Circuits

Oscillation Based Test in Mixed Signal Circuits Author Gloria Huertas Sánchez
ISBN-10 9781402053153
Release 2007-06-03
Pages 452
Download Link Click Here

This book presents the development and experimental validation of the structural test strategy called Oscillation-Based Test – OBT in short. The results presented here assert, not only from a theoretical point of view, but also based on a wide experimental support, that OBT is an efficient defect-oriented test solution, complementing the existing functional test techniques for mixed-signal circuits.



Soft Errors in Modern Electronic Systems

Soft Errors in Modern Electronic Systems Author Michael Nicolaidis
ISBN-10 1441969934
Release 2010-09-24
Pages 318
Download Link Click Here

This book provides a comprehensive presentation of the most advanced research results and technological developments enabling understanding, qualifying and mitigating the soft errors effect in advanced electronics, including the fundamental physical mechanisms of radiation induced soft errors, the various steps that lead to a system failure, the modelling and simulation of soft error at various levels (including physical, electrical, netlist, event driven, RTL, and system level modelling and simulation), hardware fault injection, accelerated radiation testing and natural environment testing, soft error oriented test structures, process-level, device-level, cell-level, circuit-level, architectural-level, software level and system level soft error mitigation techniques. The book contains a comprehensive presentation of most recent advances on understanding, qualifying and mitigating the soft error effect in advanced electronic systems, presented by academia and industry experts in reliability, fault tolerance, EDA, processor, SoC and system design, and in particular, experts from industries that have faced the soft error impact in terms of product reliability and related business issues and were in the forefront of the countermeasures taken by these companies at multiple levels in order to mitigate the soft error effects at a cost acceptable for commercial products. In a fast moving field, where the impact on ground level electronics is very recent and its severity is steadily increasing at each new process node, impacting one after another various industry sectors (as an example, the Automotive Electronics Council comes to publish qualification requirements on soft errors), research and technology developments and industrial practices have evolve very fast, outdating the most recent books edited at 2004.



Architecture and CAD for Deep Submicron FPGAS

Architecture and CAD for Deep Submicron FPGAS Author Vaughn Betz
ISBN-10 9781461551454
Release 2012-12-06
Pages 247
Download Link Click Here

Since their introduction in 1984, Field-Programmable Gate Arrays (FPGAs) have become one of the most popular implementation media for digital circuits and have grown into a $2 billion per year industry. As process geometries have shrunk into the deep-submicron region, the logic capacity of FPGAs has greatly increased, making FPGAs a viable implementation alternative for larger and larger designs. To make the best use of these new deep-submicron processes, one must re-design one's FPGAs and Computer- Aided Design (CAD) tools. Architecture and CAD for Deep-Submicron FPGAs addresses several key issues in the design of high-performance FPGA architectures and CAD tools, with particular emphasis on issues that are important for FPGAs implemented in deep-submicron processes. Three factors combine to determine the performance of an FPGA: the quality of the CAD tools used to map circuits into the FPGA, the quality of the FPGA architecture, and the electrical (i.e. transistor-level) design of the FPGA. Architecture and CAD for Deep-Submicron FPGAs examines all three of these issues in concert. In order to investigate the quality of different FPGA architectures, one needs CAD tools capable of automatically implementing circuits in each FPGA architecture of interest. Once a circuit has been implemented in an FPGA architecture, one next needs accurate area and delay models to evaluate the quality (speed achieved, area required) of the circuit implementation in the FPGA architecture under test. This book therefore has three major foci: the development of a high-quality and highly flexible CAD infrastructure, the creation of accurate area and delay models for FPGAs, and the study of several important FPGA architectural issues. Architecture and CAD for Deep-Submicron FPGAs is an essential reference for researchers, professionals and students interested in FPGAs.



Design and Analysis of Fault tolerant Digital Systems

Design and Analysis of Fault tolerant Digital Systems Author Barry W. Johnson
ISBN-10 UOM:39015012021401
Release 1989
Pages 584
Download Link Click Here

Design and Analysis of Fault tolerant Digital Systems has been writing in one form or another for most of life. You can find so many inspiration from Design and Analysis of Fault tolerant Digital Systems also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Design and Analysis of Fault tolerant Digital Systems book for free.



Digital Logic Testing and Simulation

Digital Logic Testing and Simulation Author Alexander Miczo
ISBN-10 0471457779
Release 2003-10-24
Pages 696
Download Link Click Here

Your road map for meeting today's digital testing challenges Today, digital logic devices are common in products that impact public safety, including applications in transportation and human implants. Accurate testing has become more critical to reliability, safety, and the bottom line. Yet, as digital systems become more ubiquitous and complex, the challenge of testing them has become more difficult. As one development group designing a RISC stated, "the work required to . . . test a chip of this size approached the amount of effort required to design it." A valued reference for nearly two decades, Digital Logic Testing and Simulation has been significantly revised and updated for designers and test engineers who must meet this challenge. There is no single solution to the testing problem. Organized in an easy-to-follow, sequential format, this Second Edition familiarizes the reader with the many different strategies for testing and their applications, and assesses the strengths and weaknesses of the various approaches. The book reviews the building blocks of a successful testing strategy and guides the reader on choosing the best solution for a particular application. Digital Logic Testing and Simulation, Second Edition covers such key topics as: * Binary Decision Diagrams (BDDs) and cycle-based simulation * Tester architectures/Standard Test Interface Language (STIL) * Practical algorithms written in a Hardware Design Language (HDL) * Fault tolerance * Behavioral Automatic Test Pattern Generation (ATPG) * The development of the Test Design Expert (TDX), the many obstacles encountered and lessons learned in creating this novel testing approach Up-to-date and comprehensive, Digital Logic Testing and Simulation is an important resource for anyone charged with pinpointing faulty products and assuring quality, safety, and profitability.



System on Chip Test Architectures

System on Chip Test Architectures Author Laung-Terng Wang
ISBN-10 0080556809
Release 2010-07-28
Pages 896
Download Link Click Here

Modern electronics testing has a legacy of more than 40 years. The introduction of new technologies, especially nanometer technologies with 90nm or smaller geometry, has allowed the semiconductor industry to keep pace with the increased performance-capacity demands from consumers. As a result, semiconductor test costs have been growing steadily and typically amount to 40% of today's overall product cost. This book is a comprehensive guide to new VLSI Testing and Design-for-Testability techniques that will allow students, researchers, DFT practitioners, and VLSI designers to master quickly System-on-Chip Test architectures, for test debug and diagnosis of digital, memory, and analog/mixed-signal designs. Emphasizes VLSI Test principles and Design for Testability architectures, with numerous illustrations/examples. Most up-to-date coverage available, including Fault Tolerance, Low-Power Testing, Defect and Error Tolerance, Network-on-Chip (NOC) Testing, Software-Based Self-Testing, FPGA Testing, MEMS Testing, and System-In-Package (SIP) Testing, which are not yet available in any testing book. Covers the entire spectrum of VLSI testing and DFT architectures, from digital and analog, to memory circuits, and fault diagnosis and self-repair from digital to memory circuits. Discusses future nanotechnology test trends and challenges facing the nanometer design era; promising nanotechnology test techniques, including Quantum-Dots, Cellular Automata, Carbon-Nanotubes, and Hybrid Semiconductor/Nanowire/Molecular Computing. Practical problems at the end of each chapter for students.



Reconfigurable Field Programmable Gate Arrays for Mission Critical Applications

Reconfigurable Field Programmable Gate Arrays for Mission Critical Applications Author Niccolò Battezzati
ISBN-10 1441975950
Release 2010-11-09
Pages 220
Download Link Click Here

Embedded systems applications that are either mission or safety-critical usually entail low- to mid- production volumes, require the rapid development of specific tasks, which are typically computing intensive, and are cost bounded. The adoption of re-configurable FPGAs in such application domains is constrained to the availability of suitable techniques to guarantee the dependability requirements entailed by critical applications. This book describes the challenges faced by designers when implementing a mission- or safety-critical application using re-configurable FPGAs and it details various techniques to overcome these challenges. In addition to an overview of the key concepts of re-configurable FPGAs, it provides a theoretical description of the failure modes that can cause incorrect operation of re-configurable FPGA-based electronic systems. It also outlines analysis techniques that can be used to forecast such failures and covers the theory behind solutions to mitigate fault effects. This book also reviews current technologies available for building re-configurable FPGAs, specifically SRAM-based technology and Flash-based technology. For each technology introduced, theoretical concepts presented are applied to real cases. Design techniques and tools are presented to develop critical applications using commercial, off-the-shelf devices, such as Xilinx Virtex FPGAs, and Actel ProASIC FPGAs. Alternative techniques based on radiation hardened FPGAs, such as Xilinx SIRF and Atmel ATF280 are also presented. This publication is an invaluable reference for anyone interested in understanding the technologies of re-configurable FPGAs, as well as designers developing critical applications based on these technologies.



Software Implemented Hardware Fault Tolerance

Software Implemented Hardware Fault Tolerance Author Olga Goloubeva
ISBN-10 9780387329376
Release 2006-09-19
Pages 228
Download Link Click Here

This book presents the theory behind software-implemented hardware fault tolerance, as well as the practical aspects needed to put it to work on real examples. By evaluating accurately the advantages and disadvantages of the already available approaches, the book provides a guide to developers willing to adopt software-implemented hardware fault tolerance in their applications. Moreover, the book identifies open issues for researchers willing to improve the already available techniques.



VLSI Test Principles and Architectures

VLSI Test Principles and Architectures Author Laung-Terng Wang
ISBN-10 0080474799
Release 2006-08-14
Pages 808
Download Link Click Here

This book is a comprehensive guide to new DFT methods that will show the readers how to design a testable and quality product, drive down test cost, improve product quality and yield, and speed up time-to-market and time-to-volume. Most up-to-date coverage of design for testability. Coverage of industry practices commonly found in commercial DFT tools but not discussed in other books. Numerous, practical examples in each chapter illustrating basic VLSI test principles and DFT architectures.



SBCCI 2006

SBCCI 2006 Author Sociedade Brasileira de Computação
ISBN-10 STANFORD:36105131869740
Release 2006
Pages 238
Download Link Click Here

SBCCI 2006 has been writing in one form or another for most of life. You can find so many inspiration from SBCCI 2006 also informative, and entertaining. Click DOWNLOAD or Read Online button to get full SBCCI 2006 book for free.



Proceedings

Proceedings Author
ISBN-10 UIUC:30112069041629
Release 2006
Pages
Download Link Click Here

Proceedings has been writing in one form or another for most of life. You can find so many inspiration from Proceedings also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Proceedings book for free.



On Line Testing for VLSI

On Line Testing for VLSI Author Michael Nicolaidis
ISBN-10 9781475760699
Release 2013-03-09
Pages 160
Download Link Click Here

Test functions (fault detection, diagnosis, error correction, repair, etc.) that are applied concurrently while the system continues its intended function are defined as on-line testing. In its expanded scope, on-line testing includes the design of concurrent error checking subsystems that can be themselves self-checking, fail-safe systems that continue to function correctly even after an error occurs, reliability monitoring, and self-test and fault-tolerant designs. On-Line Testing for VLSI contains a selected set of articles that discuss many of the modern aspects of on-line testing as faced today. The contributions are largely derived from recent IEEE International On-Line Testing Workshops. Guest editors Michael Nicolaidis, Yervant Zorian and Dhiraj Pradhan organized the articles into six chapters. In the first chapter the editors introduce a large number of approaches with an expanded bibliography in which some references date back to the sixties. On-Line Testing for VLSI is an edited volume of original research comprising invited contributions by leading researchers.



Introduction to Hardware Security and Trust

Introduction to Hardware Security and Trust Author Mohammad Tehranipoor
ISBN-10 1441980806
Release 2011-09-22
Pages 427
Download Link Click Here

This book provides the foundations for understanding hardware security and trust, which have become major concerns for national security over the past decade. Coverage includes security and trust issues in all types of electronic devices and systems such as ASICs, COTS, FPGAs, microprocessors/DSPs, and embedded systems. This serves as an invaluable reference to the state-of-the-art research that is of critical significance to the security of, and trust in, modern society’s microelectronic-supported infrastructures.