**Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.**

Author | Paul R. Halmos | |

ISBN-10 | 9780486822266 | |

Release | 2017-05-24 | |

Pages | 208 | |

Download Link | Click Here |

Classic, widely cited, and accessible treatment offers an ideal supplement to many traditional linear algebra texts. "Extremely well-written and logical, with short and elegant proofs." — MAA Reviews. 1958 edition. |

Author | Paul Richard Halmos | |

ISBN-10 | STANFORD:36105030753854 | |

Release | 1947 | |

Pages | 196 | |

Download Link | Click Here |

Finite dimensional vector spaces has been writing in one form or another for most of life. You can find so many inspiration from Finite dimensional vector spaces also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Finite dimensional vector spaces book for free. |

Author | Sheldon Axler | |

ISBN-10 | 9783319110806 | |

Release | 2014-11-05 | |

Pages | 340 | |

Download Link | Click Here |

This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the usual demand for suitable mathematical maturity. Thus the text starts by discussing vector spaces, linear independence, span, basis, and dimension. The book then deals with linear maps, eigenvalues, and eigenvectors. Inner-product spaces are introduced, leading to the finite-dimensional spectral theorem and its consequences. Generalized eigenvectors are then used to provide insight into the structure of a linear operator. |

Author | Larry Smith | |

ISBN-10 | 0387984550 | |

Release | 1998-05-28 | |

Pages | 454 | |

Download Link | Click Here |

This popular and successful text was originally written for a one-semester course in linear algebra at the sophomore undergraduate level. Consequently, the book deals almost exclusively with real finite dimensional vector spaces, but in a setting and formulation that permits easy generalisation to abstract vector spaces. A wide selection of examples of vector spaces and linear transformation is presented to serve as a testing ground for the theory. In the second edition, a new chapter on Jordan normal form was added which reappears here in expanded form as the second goal of this new edition, after the principal axis theorem. To achieve these goals in one semester it is necessary to follow a straight path, but this is compensated by a wide selection of examples and exercises. In addition, the author includes an introduction to invariant theory to show that linear algebra alone is incapable of solving these canonical forms problems. A compact, but mathematically clean introduction to linear algebra with particular emphasis on topics in abstract algebra, the theory of differential equations, and group representation theory. |

Author | Serge Lang | |

ISBN-10 | 0387964126 | |

Release | 1987-01-26 | |

Pages | 285 | |

Download Link | Click Here |

"Linear Algebra" is intended for a one-term course at the junior or senior level. It begins with an exposition of the basic theory of vector spaces and proceeds to explain the fundamental structure theorem for linear maps, including eigenvectors and eigenvalues, quadratic and hermitian forms, diagnolization of symmetric, hermitian, and unitary linear maps and matrices, triangulation, and Jordan canonical form. The book also includes a useful chapter on convex sets and the finite-dimensional Krein-Milman theorem. The presentation is aimed at the student who has already had some exposure to the elementary theory of matrices, determinants and linear maps. However the book is logically self-contained. In this new edition, many parts of the book have been rewritten and reorganized, and new exercises have been added. |

Author | Lawrence Narici | |

ISBN-10 | 9781584888673 | |

Release | 2010-07-26 | |

Pages | 628 | |

Download Link | Click Here |

With many new concrete examples and historical notes, Topological Vector Spaces, Second Edition provides one of the most thorough and up-to-date treatments of the Hahn–Banach theorem. This edition explores the theorem’s connection with the axiom of choice, discusses the uniqueness of Hahn–Banach extensions, and includes an entirely new chapter on vector-valued Hahn–Banach theorems. It also considers different approaches to the Banach–Stone theorem as well as variations of the theorem. The book covers locally convex spaces; barreled, bornological, and webbed spaces; and reflexivity. It traces the development of various theorems from their earliest beginnings to present day, providing historical notes to place the results in context. The authors also chronicle the lives of key mathematicians, including Stefan Banach and Eduard Helly. Suitable for both beginners and experienced researchers, this book contains an abundance of examples, exercises of varying levels of difficulty with many hints, and an extensive bibliography and index. |

Author | Peter D. Lax | |

ISBN-10 | 9781118626924 | |

Release | 2013-05-20 | |

Pages | 392 | |

Download Link | Click Here |

Praise for the First Edition ". . .recommended for the teacher and researcher as well as for graduate students. In fact, [it] has a place on every mathematician's bookshelf." -American Mathematical Monthly Linear Algebra and Its Applications, Second Edition presents linear algebra as the theory and practice of linear spaces and linear maps with a unique focus on the analytical aspects as well as the numerous applications of the subject. In addition to thorough coverage of linear equations, matrices, vector spaces, game theory, and numerical analysis, the Second Edition features student-friendly additions that enhance the book's accessibility, including expanded topical coverage in the early chapters, additional exercises, and solutions to selected problems. Beginning chapters are devoted to the abstract structure of finite dimensional vector spaces, and subsequent chapters address convexity and the duality theorem as well as describe the basics of normed linear spaces and linear maps between normed spaces. Further updates and revisions have been included to reflect the most up-to-date coverage of the topic, including: The QR algorithm for finding the eigenvalues of a self-adjoint matrix The Householder algorithm for turning self-adjoint matrices into tridiagonal form The compactness of the unit ball as a criterion of finite dimensionality of a normed linear space Additionally, eight new appendices have been added and cover topics such as: the Fast Fourier Transform; the spectral radius theorem; the Lorentz group; the compactness criterion for finite dimensionality; the characterization of commentators; proof of Liapunov's stability criterion; the construction of the Jordan Canonical form of matrices; and Carl Pearcy's elegant proof of Halmos' conjecture about the numerical range of matrices. Clear, concise, and superbly organized, Linear Algebra and Its Applications, Second Edition serves as an excellent text for advanced undergraduate- and graduate-level courses in linear algebra. Its comprehensive treatment of the subject also makes it an ideal reference or self-study for industry professionals. |

Author | Serge Lang | |

ISBN-10 | 0387953272 | |

Release | 2001-11-29 | |

Pages | 260 | |

Download Link | Click Here |

This is a reprint of A First Course in Calculus, which has gone through five editions since the early sixties. It covers all the topics traditionally taught in the first-year calculus sequence in a brief and elementary fashion. As sociological and educational conditions have evolved in various ways over the past four decades, it has been found worthwhile to make the original edition available again. The audience consists of those taking the first calculus course, in high school or college. The approach is the one which was successful decades ago, involving clarity, and adjusted to a time when the students¿ background was not as substantial as it might be. We are now back to those times, so it¿s time to start over again. There are no epsilon-deltas, but this does not imply that the book is not rigorous. Lang learned this attitude from Emil Artin, around 1950. |

Author | Bharath Sethuraman | |

ISBN-10 | 0387948481 | |

Release | 1996-11-26 | |

Pages | 192 | |

Download Link | Click Here |

Using the proof of the non-trisectability of an arbitrary angle as a final goal, the author develops in an easy conversational style the basics of rings, fields, and vector spaces. Originally developed as a text for an introduction to algebra course for future high-school teachers at California State University, Northridge, the focus of this book is on exposition. It would serve extremely well as a focused, one-semester introduction to abstract algebra. |

Author | James B. Carrell | |

ISBN-10 | 9780387794280 | |

Release | 2017-09-02 | |

Pages | 410 | |

Download Link | Click Here |

This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material. Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable. |

Author | Sheldon Axler | |

ISBN-10 | 9783034603478 | |

Release | 2011-04-13 | |

Pages | 362 | |

Download Link | Click Here |

Paul Richard Halmos, who lived a life of unbounded devotion to mathematics and to the mathematical community, died at the age of 90 on October 2, 2006. This volume is a memorial to Paul by operator theorists he inspired. Paul’sinitial research,beginning with his 1938Ph.D. thesis at the University of Illinois under Joseph Doob, was in probability, ergodic theory, and measure theory. A shift occurred in the 1950s when Paul’s interest in foundations led him to invent a subject he termed algebraic logic, resulting in a succession of papers on that subject appearing between 1954 and 1961, and the book Algebraic Logic, published in 1962. Paul’s ?rst two papers in pure operator theory appeared in 1950. After 1960 Paul’s research focused on Hilbert space operators, a subject he viewed as enc- passing ?nite-dimensional linear algebra. Beyond his research, Paul contributed to mathematics and to its community in manifold ways: as a renowned expositor, as an innovative teacher, as a tireless editor, and through unstinting service to the American Mathematical Society and to the Mathematical Association of America. Much of Paul’s in?uence ?owed at a personal level. Paul had a genuine, uncalculating interest in people; he developed an enormous number of friendships over the years, both with mathematicians and with nonmathematicians. Many of his mathematical friends, including the editors ofthisvolume,whileabsorbingabundantquantitiesofmathematicsatPaul’sknee, learned from his advice and his example what it means to be a mathematician. |

Author | Peter Petersen | |

ISBN-10 | 9781461436126 | |

Release | 2012-06-07 | |

Pages | 390 | |

Download Link | Click Here |

This textbook on linear algebra includes the key topics of the subject that most advanced undergraduates need to learn before entering graduate school. All the usual topics, such as complex vector spaces, complex inner products, the Spectral theorem for normal operators, dual spaces, the minimal polynomial, the Jordan canonical form, and the rational canonical form, are covered, along with a chapter on determinants at the end of the book. In addition, there is material throughout the text on linear differential equations and how it integrates with all of the important concepts in linear algebra. This book has several distinguishing features that set it apart from other linear algebra texts. For example: Gaussian elimination is used as the key tool in getting at eigenvalues; it takes an essentially determinant-free approach to linear algebra; and systems of linear differential equations are used as frequent motivation for the reader. Another motivating aspect of the book is the excellent and engaging exercises that abound in this text. This textbook is written for an upper-division undergraduate course on Linear Algebra. The prerequisites for this book are a familiarity with basic matrix algebra and elementary calculus, although any student who is willing to think abstractly should not have too much difficulty in understanding this text. |

Author | Rodney Coleman | |

ISBN-10 | 9781461438946 | |

Release | 2012-07-25 | |

Pages | 249 | |

Download Link | Click Here |

This book serves as an introduction to calculus on normed vector spaces at a higher undergraduate or beginning graduate level. The prerequisites include basic calculus and linear algebra, as well as a certain mathematical maturity. All the important topology and functional analysis topics are introduced where necessary. In its attempt to show how calculus on normed vector spaces extends the basic calculus of functions of several variables, this book is one of the few textbooks to bridge the gap between the available elementary texts and high level texts. The inclusion of many non-trivial applications of the theory and interesting exercises provides motivation for the reader. |

Author | James Kenyon Knowles | |

ISBN-10 | 0195112547 | |

Release | 1998 | |

Pages | 120 | |

Download Link | Click Here |

Linear Vector Spaces and Cartesian Tensors is primarily concerned with the theory of finite dimensional Euclidian spaces. It makes a careful distinction between real and complex spaces, with an emphasis on real spaces, and focuses on those elements of the theory that are especially important in applications to continuum mechanics. The geometric content of the theory and the distinction between matrices and tensors are emphasized, and absolute- and component-notation are both employed. While the mathematics is rigorous, the style is casual. Chapter 1 deals with the basic notion of a linear vector space; many examples of such spaces are given, including infinite-dimensional ones. The idea of a linear transformation of a vector space into itself is introduced and explored in Chapter 2. Chapter 3 deals with linear transformations on finite dimensional real Euclidean spaces (i.e., Cartesian tensors), focusing on symmetric tensors, orthogonal tensors, and the interaction of both in the kinetically important polar decomposition theorem. Chapter 4 exploits the ideas introduced in the first three chapters in order to construct the theory of tensors of rank four, which are important in continuum mechanics. Finally, Chapter 5 concentrates on applications of the earlier material to the kinematics of continua, to the notion of isotropic materials, to the concept of scalar invariant functions of tensors, and to linear dynamical systems. Exercises and problems of varying degrees of difficulty are included at the end of each chapter. Two appendices further enhance the text: the first is a short list of mathematical results that students should already be familiar with, and the second contains worked out solutions to almost all of the problems. Offering many unusual examples and applications, Linear Vector Spaces and Cartesian Tensors serves as an excellent text for advanced undergraduate or first year graduate courses in engineering mathematics and mechanics. Its clear writing style also makes this work useful as a self-study guide. |

Author | Vivek Sahai | |

ISBN-10 | 0849324262 | |

Release | 2002-05-01 | |

Pages | 208 | |

Download Link | Click Here |

This book presents a concise, comprehensive introduction to the fundamentals of linear algebra. The authors develop the subject in a manner accessible to readers of varied backgrounds. The material requires only very basic algebra and a rudimentary knowledge of matrices and determinants as prerequisites, but the text includes an introductory chapter containing most of the foundational material required. Linear Algebra begins with the basic concepts of vector spaces, subspace, basis, and dimension. Although the authors emphasize finite dimensional vector spaces, they also include examples of infinite dimensional vector spaces to highlight the differences between the two classes. The treatment then moves to the analysis of a single linear operator on a finite dimensional vector space, including discussions on characterizing diagonizable and triangulable operators. It uses the concept of generalized eigenvectors to obtain an inductive procedure for constructing a Jordan basis for a triangulable linear operator and again uses an algorithmic approach to the rational canonical form. Subsequent discussions focus on finite dimensional inner product spaces and non-negative operators, isometries, and polar and singular-value decomposition. The final chapter explores bilinear forms and extends the results of inner product spaces to bilinear spaces. Numerous examples and exercises at the end of each section make this an outstanding text for graduate and senior undergraduate students. |

Author | Thomas Banchoff | |

ISBN-10 | 9781461243908 | |

Release | 2012-12-06 | |

Pages | 308 | |

Download Link | Click Here |

This book introduces the concepts of linear algebra through the careful study of two and three-dimensional Euclidean geometry. This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. The later chapters deal with n-dimensional Euclidean space and other finite-dimensional vector space. |

Author | Robert J. Valenza | |

ISBN-10 | 9781461209010 | |

Release | 2012-12-06 | |

Pages | 237 | |

Download Link | Click Here |

Based on lectures given at Claremont McKenna College, this text constitutes a substantial, abstract introduction to linear algebra. The presentation emphasizes the structural elements over the computational - for example by connecting matrices to linear transformations from the outset - and prepares the student for further study of abstract mathematics. Uniquely among algebra texts at this level, it introduces group theory early in the discussion, as an example of the rigorous development of informal axiomatic systems. |