Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Foundations of Differential Calculus

Foundations of Differential Calculus Author Euler
ISBN-10 9780387226453
Release 2006-05-04
Pages 194
Download Link Click Here

The positive response to the publication of Blanton's English translations of Euler's "Introduction to Analysis of the Infinite" confirmed the relevance of this 240 year old work and encouraged Blanton to translate Euler's "Foundations of Differential Calculus" as well. The current book constitutes just the first 9 out of 27 chapters. The remaining chapters will be published at a later time. With this new translation, Euler's thoughts will not only be more accessible but more widely enjoyed by the mathematical community.



Local Analysis

Local Analysis Author Carl-Heinz Scriba
ISBN-10 3055014472
Release 1994
Pages 240
Download Link Click Here

A detailed introduction to those parts of finite-dimensional real calculus that deal with multidimensional differentiation and only one-dimensional integration. Uses the concepts of function and derivative to bypass coordinates and dependent variables. For undergraduate students of mathematics, physics, or engineering who are familiar with one-dimensional calculus and linear algebra. Annotation copyright by Book News, Inc., Portland, OR



Local Analysis Part A Foundations and Differential Calculus Part B First Order Differential Equations and Differential Forms

Local Analysis  Part A  Foundations and Differential Calculus  Part B  First Order Differential Equations and Differential Forms Author Carl-Heinz Schriba
ISBN-10 352740063X
Release 1996-10-28
Pages 591
Download Link Click Here

The first part of the "Local Analysis" textbook is self-consistent & provides a detailed introduction to those parts of finite-dimensional real calculus which go with multi-dimensional differentiation & only one-dimensional integration. The second part is based upon the first one & gives a detailed introduction to the initial value problems of certain systems of first order ordinary & partial differential equations as well as to the theory of differential forms.



Introduction to Differential Calculus

Introduction to Differential Calculus Author Ulrich L. Rohde
ISBN-10 9781118130148
Release 2012-01-12
Pages 736
Download Link Click Here

Enables readers to apply the fundamentals of differential calculus to solve real-life problems in engineering and the physical sciences Introduction to Differential Calculus fully engages readers by presenting the fundamental theories and methods of differential calculus and then showcasing how the discussed concepts can be applied to real-world problems in engineering and the physical sciences. With its easy-to-follow style and accessible explanations, the book sets a solid foundation before advancing to specific calculus methods, demonstrating the connections between differential calculus theory and its applications. The first five chapters introduce underlying concepts such as algebra, geometry, coordinate geometry, and trigonometry. Subsequent chapters present a broad range of theories, methods, and applications in differential calculus, including: Concepts of function, continuity, and derivative Properties of exponential and logarithmic function Inverse trigonometric functions and their properties Derivatives of higher order Methods to find maximum and minimum values of a function Hyperbolic functions and their properties Readers are equipped with the necessary tools to quickly learn how to understand a broad range of current problems throughout the physical sciences and engineering that can only be solved with calculus. Examples throughout provide practical guidance, and practice problems and exercises allow for further development and fine-tuning of various calculus skills. Introduction to Differential Calculus is an excellent book for upper-undergraduate calculus courses and is also an ideal reference for students and professionals alike who would like to gain a further understanding of the use of calculus to solve problems in a simplified manner.



Introduction to Analysis of the Infinite

Introduction to Analysis of the Infinite Author Leonhard Euler
ISBN-10 9781461210214
Release 2012-12-06
Pages 327
Download Link Click Here

From the preface of the author: "...I have divided this work into two books; in the first of these I have confined myself to those matters concerning pure analysis. In the second book I have explained those thing which must be known from geometry, since analysis is ordinarily developed in such a way that its application to geometry is shown. In the first book, since all of analysis is concerned with variable quantities and functions of such variables, I have given full treatment to functions. I have also treated the transformation of functions and functions as the sum of infinite series. In addition I have developed functions in infinite series..."



The Foundations of Business Analysis

The Foundations of Business Analysis Author M. Douglas Berg
ISBN-10 1465222030
Release 2013-05-15
Pages 149
Download Link Click Here

The Foundations of Business Analysis has been writing in one form or another for most of life. You can find so many inspiration from The Foundations of Business Analysis also informative, and entertaining. Click DOWNLOAD or Read Online button to get full The Foundations of Business Analysis book for free.



Shapes and Geometries

Shapes and Geometries Author M. C. Delfour
ISBN-10 9780898719369
Release 2011-01-01
Pages 622
Download Link Click Here

Presents the latest groundbreaking theoretical foundation to shape optimization in a form accessible to mathematicians, scientists and engineers.



The Absolute Differential Calculus

The Absolute Differential Calculus Author Tullio Levi-Civita
ISBN-10 0486446379
Release 2005
Pages 452
Download Link Click Here

A chief requirement in the study of relativity is knowledge of the absolute differential calculus, the subject that Einstein found necessary for developing his ideas mathematically. Tullio Levi-Civita was one of the founders of this field of mathematics, and he presents a clear, detailed exposition of the subject in this classic book. The first section of the three-part treatment examines functional determinants and matrices; systems of total differential equations; linear partial differential equations in complete systems; and algebraic foundations of the absolute differential calculus, concluding with a geometrical introduction to the theory of differential quadratic forms. Part two, a study of the fundamental quadratic form and the absolute differential calculus, focuses on covariant differentiation, invariants and differential parameters, and locally geodesic coordinates; Riemann's symbols and properties relating to curvature, Ricci's and Einstein's symbols, and geodesic deviation; relations between two different metrics referred to the same parameters, manifolds of constant curvature; and differential quadratic forms of class zero and class one; and some applications of intrinsic geometry. The third and final section explores physical applications, including the evolution of mechanics and geometrical optics and their relation to a four-dimensional world according to Einstein; and gravitational equations and general relativity.



Fundamentals of Calculus

Fundamentals of Calculus Author Carla C. Morris
ISBN-10 9781119015314
Release 2015-07-28
Pages 368
Download Link Click Here

Features the techniques, methods, and applications of calculus using real-world examples from business and economics as well as the life and social sciences An introduction to differential and integral calculus, Fundamentals of Calculus presents key topics suited for a variety of readers in fields ranging from entrepreneurship and economics to environmental and social sciences. Practical examples from a variety of subject areas are featured throughout each chapter and step-by-step explanations for the solutions are presented. Specific techniques are also applied to highlight important information in each section, including symbols interspersed throughout to further reader comprehension. In addition, the book illustrates the elements of finite calculus with the varied formulas for power, quotient, and product rules that correlate markedly with traditional calculus. Featuring calculus as the “mathematics of change,” each chapter concludes with a historical notes section. Fundamentals of Calculus chapter coverage includes: Linear Equations and Functions The Derivative Using the Derivative Exponents and Logarithms Differentiation Techniques Integral Calculus Integrations Techniques Functions of Several Variables Series and Summations Applications to Probability Supplemented with online instructional support materials, Fundamentals of Calculus is an ideal textbook for undergraduate students majoring in business, economics, biology, chemistry, and environmental science.



Foundations of Differential Geodesy

Foundations of Differential Geodesy Author Joseph Zund
ISBN-10 9783642791871
Release 2012-12-06
Pages 373
Download Link Click Here

Differential geodesy is concerned with the geometry of the gravity field of the Earth, which is of fundamental importance to both theoretical geodesy and geophysics. This monograph presents a unified treatment of the foundations of differential geodesy as proposed originally by Antonio Marussi and Martin Hotine in their work. The principal features of the Marussi-Hotine approach to theoretical aspects are given in the first five chapters (based on leg calculus), while the last five chapters are devoted to the fundamental ideas of the Marussi and Hotine theory. The text includes practical problems and is intended for use by research geodesists, graduate students in geodesy, and theoretical geophysicists.



Differential and Riemannian Manifolds

Differential and Riemannian Manifolds Author Serge Lang
ISBN-10 9781461241829
Release 2012-12-06
Pages 364
Download Link Click Here

This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).



Differential and Integral Calculus

Differential and Integral Calculus Author Richard Courant
ISBN-10 9781118031490
Release 2011-08-15
Pages 640
Download Link Click Here

Differential and Integral Calculus has been writing in one form or another for most of life. You can find so many inspiration from Differential and Integral Calculus also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Differential and Integral Calculus book for free.



Differential and Integral Calculus

Differential and Integral Calculus Author Edmund Landau
ISBN-10 0821828304
Release 2001
Pages 372
Download Link Click Here

After completing his famous Foundations of Analysis, Landau turned his attention to this book on calculus. The approach is that of an unrepentant analyst, with an emphasis on functions rather than on geometric or physical applications. The book is another example of Landau's formidable skill as an expositor. It is a masterpiece of rigor and clarity. And what a book it is! The marks of Landau's thoroughness and elegance, and of his undoubted authority, impress themselves on the reader at every turn, from the opening of the preface ... to the closing of the final chapter. It is a book that all analysts ... should possess ... to see how a master of his craft like Landau presented the calculus when he was at the height of his power and reputation. --Mathematical Gazette



De Motu and the Analyst

De Motu and the Analyst Author G. Berkeley
ISBN-10 9789401125925
Release 2012-12-06
Pages 232
Download Link Click Here

Berkeley's philosophy has been much studied and discussed over the years, and a growing number of scholars have come to the realization that scientific and mathematical writings are an essential part of his philosophical enterprise. The aim of this volume is to present Berkeley's two most important scientific texts in a form which meets contemporary standards of scholarship while rendering them accessible to the modern reader. Although editions of both are contained in the fourth volume of the Works, these lack adequate introductions and do not provide com plete and corrected texts. The present edition contains a complete and critically established text of both De Motu and The Analyst, in addi tion to a new translation of De Motu. The introductions and notes are designed to provide the background necessary for a full understanding of Berkeley's account of science and mathematics. Although these two texts are very different, they are united by a shared a concern with the work of Newton and Leibniz. Berkeley's De Motu deals extensively with Newton's Principia and Leibniz's Specimen Dynamicum, while The Analyst critiques both Leibnizian and Newto nian mathematics. Berkeley is commonly thought of as a successor to Locke or Malebranche, but as these works show he is also a successor to Newton and Leibniz.



Differential Calculus on Normed Spaces

Differential Calculus on Normed Spaces Author Henri Cartan
ISBN-10 154874932X
Release 2017-08-02
Pages 176
Download Link Click Here

This classic and long out of print text by the famous French mathematician Henri Cartan, has finally been retitled and reissued as an unabridged reprint of the Kershaw Publishing Company 1971 edition at remarkably low price for a new generation of university students and teachers. It provides a concise and beautifully written course on rigorous analysis. Unlike most similar texts, which usually develop the theory in either metric or Euclidean spaces, Cartan's text is set entirely in normed vector spaces, particularly Banach spaces. This not only allows the author to develop carefully the concepts of calculus in a setting of maximal generality, it allows him to unify both single and multivariable calculus over either the real or complex scalar fields by considering derivatives of nth orders as linear transformations. This prepares the student for the subsequent study of differentiable manifolds modeled on Banach spaces as well as graduate analysis courses, where normed spaces and their isomorphisms play a central role. More importantly, it's republication in an inexpensive edition finally makes available again the English translations of both long separated halves of Cartan's famous 1965-6 analysis course at the University of Paris: The second half has been in print for over a decade as Differential Forms , published by Dover Books. Without the first half, it has been very difficult for readers of that second half text to be prepared with the proper prerequisites as Cartan originally intended. With both texts now available at very affordable prices, the entire course can now be easily obtained and studied as it was originally intended. The book is divided into two chapters. The first develops the abstract differential calculus. After an introductory section providing the necessary background on the elements of Banach spaces, the Frechet derivative is defined, and proofs are given of the two basic theorems of differential calculus: The mean value theorem and the inverse function theorem. The chapter proceeds with the introduction and study of higher order derivatives and a proof of Taylor's formula. It closes with a study of local maxima and minima including both necessary and sufficient conditions for the existence of such minima. The second chapter is devoted to differential equations. Then the general existence and uniqueness theorems for ordinary differential equations on Banach spaces are proved. Applications of this material to linear equations and to obtaining various properties of solutions of differential equations are then given. Finally the relation between partial differential equations of the first order and ordinary differential equations is discussed. The prerequisites are rigorous first courses in calculus on the real line (elementary analysis), linear algebra on abstract vectors spaces with linear transformations and the basic definitions of topology (metric spaces, topology,etc.) A basic course in differential equations is advised as well. Together with its' sequel, Differential Calculus On Normed Spaces forms the basis for an outstanding advanced undergraduate/first year graduate analysis course in the Bourbakian French tradition of Jean Dieudonn�'s Foundations of Modern Analysis, but a more accessible level and much more affordable then that classic.



Foundations of Optimization

Foundations of Optimization Author Osman Güler
ISBN-10 0387684077
Release 2010-08-03
Pages 442
Download Link Click Here

This book covers the fundamental principles of optimization in finite dimensions. It develops the necessary material in multivariable calculus both with coordinates and coordinate-free, so recent developments such as semidefinite programming can be dealt with.



Advanced Calculus

Advanced Calculus Author Harold M. Edwards
ISBN-10 9780817684129
Release 2013-11-10
Pages 508
Download Link Click Here

In a book written for mathematicians, teachers of mathematics, and highly motivated students, Harold Edwards has taken a bold and unusual approach to the presentation of advanced calculus. He begins with a lucid discussion of differential forms and quickly moves to the fundamental theorems of calculus and Stokes’ theorem. The result is genuine mathematics, both in spirit and content, and an exciting choice for an honors or graduate course or indeed for any mathematician in need of a refreshingly informal and flexible reintroduction to the subject. For all these potential readers, the author has made the approach work in the best tradition of creative mathematics. This affordable softcover reprint of the 1994 edition presents the diverse set of topics from which advanced calculus courses are created in beautiful unifying generalization. The author emphasizes the use of differential forms in linear algebra, implicit differentiation in higher dimensions using the calculus of differential forms, and the method of Lagrange multipliers in a general but easy-to-use formulation. There are copious exercises to help guide the reader in testing understanding. The chapters can be read in almost any order, including beginning with the final chapter that contains some of the more traditional topics of advanced calculus courses. In addition, it is ideal for a course on vector analysis from the differential forms point of view. The professional mathematician will find here a delightful example of mathematical literature; the student fortunate enough to have gone through this book will have a firm grasp of the nature of modern mathematics and a solid framework to continue to more advanced studies. The most important feature...is that it is fun—it is fun to read the exercises, it is fun to read the comments printed in the margins, it is fun simply to pick a random spot in the book and begin reading. This is the way mathematics should be presented, with an excitement and liveliness that show why we are interested in the subject. —The American Mathematical Monthly (First Review) An inviting, unusual, high-level introduction to vector calculus, based solidly on differential forms. Superb exposition: informal but sophisticated, down-to-earth but general, geometrically rigorous, entertaining but serious. Remarkable diverse applications, physical and mathematical. —The American Mathematical Monthly (1994) Based on the Second Edition