Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Functional Analysis in Mechanics

Functional Analysis in Mechanics Author Leonid P. Lebedev
ISBN-10 9781461458685
Release 2012-10-23
Pages 310
Download Link Click Here

This book offers a brief, practically complete, and relatively simple introduction to functional analysis. It also illustrates the application of functional analytic methods to the science of continuum mechanics. Abstract but powerful mathematical notions are tightly interwoven with physical ideas in the treatment of nontrivial boundary value problems for mechanical objects. This second edition includes more extended coverage of the classical and abstract portions of functional analysis. Taken together, the first three chapters now constitute a regular text on applied functional analysis. This potential use of the book is supported by a significantly extended set of exercises with hints and solutions. A new appendix, providing a convenient listing of essential inequalities and imbedding results, has been added. The book should appeal to graduate students and researchers in physics, engineering, and applied mathematics. Reviews of first edition: "This book covers functional analysis and its applications to continuum mechanics. The presentation is concise but complete, and is intended for readers in continuum mechanics who wish to understand the mathematical underpinnings of the discipline. ... Detailed solutions of the exercises are provided in an appendix." (L’Enseignment Mathematique, Vol. 49 (1-2), 2003) "The reader comes away with a profound appreciation both of the physics and its importance, and of the beauty of the functional analytic method, which, in skillful hands, has the power to dissolve and clarify these difficult problems as peroxide does clotted blood. Numerous exercises ... test the reader’s comprehension at every stage. Summing Up: Recommended." (F. E. J. Linton, Choice, September, 2003)



Mathematical Topics Between Classical and Quantum Mechanics

Mathematical Topics Between Classical and Quantum Mechanics Author Nicholas P. Landsman
ISBN-10 9781461216803
Release 2012-12-06
Pages 529
Download Link Click Here

This monograph draws on two traditions: the algebraic formulation of quantum mechanics as well as quantum field theory, and the geometric theory of classical mechanics. These are combined in a unified treatment of the theory of Poisson algebras of observables and pure state spaces with a transition probability, which leads on to a discussion of the theory of quantization and the classical limit from this perspective. A prototype of quantization comes from the analogy between the C*- algebra of a Lie groupoid and the Poisson algebra of the corresponding Lie algebroid. The parallel between reduction of symplectic manifolds in classical mechanics and induced representations of groups and C*- algebras in quantum mechanics plays an equally important role. Examples from physics include constrained quantization, curved spaces, magnetic monopoles, gauge theories, massless particles, and $theta$- vacua. Accessible to mathematicians with some prior knowledge of classical and quantum mechanics, and to mathematical physicists and theoretical physicists with some background in functional analysis.



Bulletin of the Belgian Mathematical Society Simon Stevin

Bulletin of the Belgian Mathematical Society  Simon Stevin Author
ISBN-10 CORNELL:31924089804714
Release 2005
Pages
Download Link Click Here

Bulletin of the Belgian Mathematical Society Simon Stevin has been writing in one form or another for most of life. You can find so many inspiration from Bulletin of the Belgian Mathematical Society Simon Stevin also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Bulletin of the Belgian Mathematical Society Simon Stevin book for free.



Nonsmooth Variational Problems and Their Inequalities

Nonsmooth Variational Problems and Their Inequalities Author Siegfried Carl
ISBN-10 9780387462523
Release 2007-06-08
Pages 395
Download Link Click Here

This monograph focuses primarily on nonsmooth variational problems that arise from boundary value problems with nonsmooth data and/or nonsmooth constraints, such as multivalued elliptic problems, variational inequalities, hemivariational inequalities, and their corresponding evolution problems. It provides a systematic and unified exposition of comparison principles based on a suitably extended sub-supersolution method.



Implicit Functions and Solution Mappings

Implicit Functions and Solution Mappings Author Asen L. Dontchev
ISBN-10 9781493910373
Release 2014-06-18
Pages 466
Download Link Click Here

The implicit function theorem is one of the most important theorems in analysis and its many variants are basic tools in partial differential equations and numerical analysis. This second edition of Implicit Functions and Solution Mappings presents an updated and more complete picture of the field by including solutions of problems that have been solved since the first edition was published, and places old and new results in a broader perspective. The purpose of this self-contained work is to provide a reference on the topic and to provide a unified collection of a number of results which are currently scattered throughout the literature. Updates to this edition include new sections in almost all chapters, new exercises and examples, updated commentaries to chapters and an enlarged index and references section.



Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Handbook of Mathematical Analysis in Mechanics of Viscous Fluids Author Yoshikazu Giga
ISBN-10 3319133438
Release 2018-01-26
Pages 2800
Download Link Click Here

Mathematics has always played a key role for researches in fluid mechanics. The purpose of this handbook is to give an overview of items that are key to handling problems in fluid mechanics. Since the field of fluid mechanics is huge, it is almost impossible to cover many topics. In this handbook, we focus on mathematical analysis on viscous Newtonian fluid. The first part is devoted to mathematical analysis on incompressible fluids while part 2 is devoted to compressible fluids.



Mathematical Reviews

Mathematical Reviews Author
ISBN-10 UOM:39015078588582
Release 2007
Pages
Download Link Click Here

Mathematical Reviews has been writing in one form or another for most of life. You can find so many inspiration from Mathematical Reviews also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Mathematical Reviews book for free.



Lectures on the Mathematics of Quantum Mechanics I

Lectures on the Mathematics of Quantum Mechanics I Author Gianfausto Dell'Antonio
ISBN-10 9789462391185
Release 2015-05-25
Pages 459
Download Link Click Here

The first volume (General Theory) differs from most textbooks as it emphasizes the mathematical structure and mathematical rigor, while being adapted to the teaching the first semester of an advanced course in Quantum Mechanics (the content of the book are the lectures of courses actually delivered.). It differs also from the very few texts in Quantum Mechanics that give emphasis to the mathematical aspects because this book, being written as Lecture Notes, has the structure of lectures delivered in a course, namely introduction of the problem, outline of the relevant points, mathematical tools needed, theorems, proofs. This makes this book particularly useful for self-study and for instructors in the preparation of a second course in Quantum Mechanics (after a first basic course). With some minor additions it can be used also as a basis of a first course in Quantum Mechanics for students in mathematics curricula. The second part (Selected Topics) are lecture notes of a more advanced course aimed at giving the basic notions necessary to do research in several areas of mathematical physics connected with quantum mechanics, from solid state to singular interactions, many body theory, semi-classical analysis, quantum statistical mechanics. The structure of this book is suitable for a second-semester course, in which the lectures are meant to provide, in addition to theorems and proofs, an overview of a more specific subject and hints to the direction of research. In this respect and for the width of subjects this second volume differs from other monographs on Quantum Mechanics. The second volume can be useful for students who want to have a basic preparation for doing research and for instructors who may want to use it as a basis for the presentation of selected topics.



An Introduction to Functional Analysis in Computational Mathematics

An Introduction to Functional Analysis in Computational Mathematics Author V.I. Lebedev
ISBN-10 9781461241287
Release 2012-12-06
Pages 256
Download Link Click Here

The book contains the methods and bases of functional analysis that are directly adjacent to the problems of numerical mathematics and its applications; they are what one needs for the understand ing from a general viewpoint of ideas and methods of computational mathematics and of optimization problems for numerical algorithms. Functional analysis in mathematics is now just the small visible part of the iceberg. Its relief and summit were formed under the influence of this author's personal experience and tastes. This edition in English contains some additions and changes as compared to the second edition in Russian; discovered errors and misprints had been corrected again here; to the author's distress, they jump incomprehensibly from one edition to another as fleas. The list of literature is far from being complete; just a number of textbooks and monographs published in Russian have been included. The author is grateful to S. Gerasimova for her help and patience in the complex process of typing the mathematical manuscript while the author corrected, rearranged, supplemented, simplified, general ized, and improved as it seemed to him the book's contents. The author thanks G. Kontarev for the difficult job of translation and V. Klyachin for the excellent figures.



Topological Vector Spaces and Their Applications

Topological Vector Spaces and Their Applications Author Vladimir I. Bogachev
ISBN-10 9783319571171
Release 2017-05-30
Pages 456
Download Link Click Here

This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. Overall, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.



Real and Complex Clifford Analysis

Real and Complex Clifford Analysis Author Sha Huang
ISBN-10 9780387245362
Release 2006-03-16
Pages 251
Download Link Click Here

Clifford analysis, a branch of mathematics that has been developed since about 1970, has important theoretical value and several applications. In this book, the authors introduce many properties of regular functions and generalized regular functions in real Clifford analysis, as well as harmonic functions in complex Clifford analysis. It covers important developments in handling the incommutativity of multiplication in Clifford algebra, the definitions and computations of high-order singular integrals, boundary value problems, and so on. In addition, the book considers harmonic analysis and boundary value problems in four kinds of characteristic fields proposed by Luogeng Hua for complex analysis of several variables. The great majority of the contents originate in the authors’ investigations, and this new monograph will be interesting for researchers studying the theory of functions.



Mittag Leffler Functions Related Topics and Applications

Mittag Leffler Functions  Related Topics and Applications Author Rudolf Gorenflo
ISBN-10 9783662439302
Release 2014-10-16
Pages 443
Download Link Click Here

As a result of researchers’ and scientists’ increasing interest in pure as well as applied mathematics in non-conventional models, particularly those using fractional calculus, Mittag-Leffler functions have recently caught the interest of the scientific community. Focusing on the theory of the Mittag-Leffler functions, the present volume offers a self-contained, comprehensive treatment, ranging from rather elementary matters to the latest research results. In addition to the theory the authors devote some sections of the work to the applications, treating various situations and processes in viscoelasticity, physics, hydrodynamics, diffusion and wave phenomena, as well as stochastics. In particular the Mittag-Leffler functions allow us to describe phenomena in processes that progress or decay too slowly to be represented by classical functions like the exponential function and its successors. The book is intended for a broad audience, comprising graduate students, university instructors and scientists in the field of pure and applied mathematics, as well as researchers in applied sciences like mathematical physics, theoretical chemistry, bio-mathematics, theory of control and several other related areas.



Nonlinear Inclusions and Hemivariational Inequalities

Nonlinear Inclusions and Hemivariational Inequalities Author Stanisław Migórski
ISBN-10 9781461442325
Release 2012-09-18
Pages 288
Download Link Click Here

This book introduces the reader the theory of nonlinear inclusions and hemivariational inequalities with emphasis on the study of contact mechanics. The work covers both abstract results in the area of nonlinear inclusions, hemivariational inequalities as well as the study of specific contact problems, including their modelling and their variational analysis. Provided results are based on original research on the existence, uniqueness, regularity and behavior of the solution for various classes of nonlinear stationary and evolutionary inclusions. In carrying out the variational analysis of various contact models, one systematically uses results of hemivariational inequalities and, in this way, illustrates the applications of nonlinear analysis in contact mechanics. New mathematical methods are introduced and applied in the study of nonlinear problems, which describe the contact between a deformable body and a foundation. Contact problems arise in industry, engineering and geophysics. Their variational analysis presented in this book lies the background for their numerical analysis. This volume will interest mathematicians, applied mathematicians, engineers, and scientists as well as advanced graduate students.



Quantum Theory for Mathematicians

Quantum Theory for Mathematicians Author Brian C. Hall
ISBN-10 9781461471165
Release 2013-06-19
Pages 554
Download Link Click Here

Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.



Quantum Mechanics for Mathematicians

Quantum Mechanics for Mathematicians Author Leon Armenovich Takhtadzhi͡an
ISBN-10 9780821846308
Release 2008
Pages 387
Download Link Click Here

This book provides a comprehensive treatment of quantum mechanics from a mathematics perspective and is accessible to mathematicians starting with second-year graduate students. It addition to traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin, and it introduces the reader to functional methods in quantum mechanics. This includes the Feynman path integral approach to quantum mechanics, integration in functional spaces, the relation between Feynman and Wiener integrals, Gaussian integration and regularized determinants of differential operators, fermion systems and integration over anticommuting (Grassmann) variables, supersymmetry and localization in loop spaces, and supersymmetric derivation of the Atiyah-Singer formula for the index of the Dirac operator. Prior to this book, mathematicians could find these topics only in physics textbooks and in specialized literature. This book is written in a concise style with careful attention to precise mathematics formulation of methods and results.Numerous problems, from routine to advanced, help the reader to master the subject. In addition to providing a fundamental knowledge of quantum mechanics, this book could also serve as a bridge for studying more advanced topics in quantum physics, among them quantum field theory. Prerequisites include standard first-year graduate courses covering linear and abstract algebra, topology and geometry, and real and complex analysis.



The Sherrington Kirkpatrick Model

The Sherrington Kirkpatrick Model Author Dmitry Panchenko
ISBN-10 9781461462897
Release 2013-02-26
Pages 156
Download Link Click Here

The celebrated Parisi solution of the Sherrington-Kirkpatrick model for spin glasses is one of the most important achievements in the field of disordered systems. Over the last three decades, through the efforts of theoretical physicists and mathematicians, the essential aspects of the Parisi solution were clarified and proved mathematically. The core ideas of the theory that emerged are the subject of this book, including the recent solution of the Parisi ultrametricity conjecture and a conceptually simple proof of the Parisi formula for the free energy. The treatment is self-contained and should be accessible to graduate students with a background in probability theory, with no prior knowledge of spin glasses. The methods involved in the analysis of the Sherrington-Kirkpatrick model also serve as a good illustration of such classical topics in probability as the Gaussian interpolation and concentration of measure, Poisson processes, and representation results for exchangeable arrays.



Digraphs

Digraphs Author Jørgen Bang-Jensen
ISBN-10 9781848009981
Release 2008-12-17
Pages 798
Download Link Click Here

Substantially revised, reorganised and updated, the second edition now comprises eighteen chapters, carefully arranged in a straightforward and logical manner, with many new results and open problems. As well as covering the theoretical aspects of the subject, with detailed proofs of many important results, the authors present a number of algorithms, and whole chapters are devoted to topics such as branchings, feedback arc and vertex sets, connectivity augmentations, sparse subdigraphs with prescribed connectivity, and also packing, covering and decompositions of digraphs. Throughout the book, there is a strong focus on applications which include quantum mechanics, bioinformatics, embedded computing, and the travelling salesman problem. Detailed indices and topic-oriented chapters ease navigation, and more than 650 exercises, 170 figures and 150 open problems are included to help immerse the reader in all aspects of the subject.