Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Fundamentals of Robotic Mechanical Systems

Fundamentals of Robotic Mechanical Systems Author Jorge Angeles
ISBN-10 9783319018515
Release 2013-12-09
Pages 589
Download Link Click Here

The 4th edition includes updated and additional examples and exercises on the core fundamental concepts of mechanics, robots, and kinematics of serial robots. New images of CAD models and physical robots help to motivate concepts being introduced. Each chapter of the book can be read independently of others as it addresses a seperate issue in robotics.

Robot Dynamics And Control

Robot Dynamics And Control Author Mark W Spong
ISBN-10 8126517808
Release 2008-08-04
Pages 352
Download Link Click Here

This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. It provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. The book includes many worked examples, examples illustrating all aspects of the theory, and problems.

Geometric Control of Mechanical Systems

Geometric Control of Mechanical Systems Author Francesco Bullo
ISBN-10 0387221956
Release 2004-11-04
Pages 727
Download Link Click Here

The area of analysis and control of mechanical systems using differential geometry is flourishing. This book collects many results over the last decade and provides a comprehensive introduction to the area.

Optimal Trajectory Tracking of Nonlinear Dynamical Systems

Optimal Trajectory Tracking of Nonlinear Dynamical Systems Author Jakob Lober
ISBN-10 9783319465746
Release 2016-12-20
Pages 243
Download Link Click Here

By establishing an alternative foundation of control theory, this thesis represents a significant advance in the theory of control systems, of interest to a broad range of scientists and engineers. While common control strategies for dynamical systems center on the system state as the object to be controlled, the approach developed here focuses on the state trajectory. The concept of precisely realizable trajectories identifies those trajectories that can be accurately achieved by applying appropriate control signals. The resulting simple expressions for the control signal lend themselves to immediate application in science and technology. The approach permits the generalization of many well-known results from the control theory of linear systems, e.g. the Kalman rank condition to nonlinear systems. The relationship between controllability, optimal control and trajectory tracking are clarified. Furthermore, the existence of linear structures underlying nonlinear optimal control is revealed, enabling the derivation of exact analytical solutions to an entire class of nonlinear optimal trajectory tracking problems. The clear and self-contained presentation focuses on a general and mathematically rigorous analysis of controlled dynamical systems. The concepts developed are visualized with the help of particular dynamical systems motivated by physics and chemistry.

Applied Plasticity Second Edition

Applied Plasticity  Second Edition Author Jagabandhu Chakrabarty
ISBN-10 9780387776743
Release 2010-07-07
Pages 758
Download Link Click Here

This book begins with the fundamentals of the mathematical theory of plasticity. The discussion then turns to the theory of plastic stress and its applications to structural analysis. It concludes with a wide range of topics in dynamic plasticity including wave propagation, armor penetration, and structural impact in the plastic range. In view of the rapidly growing interest in computational methods, an appendix presents the fundamentals of a finite-element analysis of metal-forming problems.

Design and Modeling of Mechanical Systems

Design and Modeling of Mechanical Systems Author Mohamed Haddar
ISBN-10 9783642371431
Release 2013-03-12
Pages 665
Download Link Click Here

The 5th International Congress on Design and Modeling of Mechanical Systems (CMSM) was held in Djerba, Tunisia on March 25-27, 2013 and followed four previous successful editions, which brought together international experts in the fields of design and modeling of mechanical systems, thus contributing to the exchange of information and skills and leading to a considerable progress in research among the participating teams. The fifth edition of the congress (CMSM ́2013), organized by the Unit of Mechanics, Modeling and Manufacturing (U2MP) of the National School of Engineers of Sfax, Tunisia, the Mechanical Engineering Laboratory (MBL) of the National School of Engineers of Monastir, Tunisia and the Mechanics Laboratory of Sousse (LMS) of the National School of Engineers of Sousse, Tunisia, saw a significant increase of the international participation. This edition brought together nearly 300 attendees who exposed their work on the following topics: mechatronics and robotics, dynamics of mechanical systems, fluid structure interaction and vibroacoustics, modeling and analysis of materials and structures, design and manufacturing of mechanical systems. This book is the proceedings of CMSM ́2013 and contains a careful selection of high quality contributions, which were exposed during various sessions of the congress. The original articles presented here provide an overview of recent research advancements accomplished in the field mechanical engineering.

Fundamentals of Robotics

Fundamentals of Robotics Author Ming Xie
ISBN-10 9789813102347
Release 2003-04-11
Pages 716
Download Link Click Here

Tomorrow's robots, which includes the humanoid robot, can perform task like tutoring children, working as tour guides, driving humans to and from work, do the family shopping etc. Tomorrow's robots will enhance lives in ways we never dreamed possible. No time to attend the decisive meeting on Asian strategy? Let your robot go for you and make the decisions. Not feeling well enough to go to the clinic? Let Dr Robot come to you, make a diagnosis, and get you the necessary medicine for treatment. No time to coach the soccer team this week? Let the robot do it for you. Tomorrow's robots will be the most exciting and revolutionary things to happen to the world since the invention of the automobile. It will change the way we work, play, think, and live. Because of this, nowadays robotics is one of the most dynamic fields of scientific research. These days, robotics is offered in almost every university in the world. Most mechanical engineering departments offer a similar course at both the undergraduate and graduate levels. And increasingly, many computer and electrical engineering departments are also offering it. This book will guide you, the curious beginner, from yesterday to tomorrow. The book will cover practical knowledge in understanding, developing, and using robots as versatile equipment to automate a variety of industrial processes or tasks. But, the book will also discuss the possibilities we can look forward to when we are capable of creating a vision-guided, learning machine.

The Robotics Primer

The Robotics Primer Author Maja J. Matarić
ISBN-10 9780262633543
Release 2007
Pages 306
Download Link Click Here

A broadly accessible introduction to robotics that spans the most basic concepts and the most novel applications; for students, teachers, and hobbyists.

Fundamentals of Robotics Engineering

Fundamentals of Robotics Engineering Author Harry H. Poole
ISBN-10 9789401170505
Release 2012-12-06
Pages 436
Download Link Click Here

Robotics engineering has progressed from an infant industry in 1961 to one including over 500 robot and allied firms around the world in 1989. During this growth period, many robotics books have been published, so me of which have served as industry standards. Until recently, the design of robotics sys tems has been primarily the responsibility of the mechanical engineer, and their application in factories has been the responsibility of the manufacturing engineer. Few robotics books address the many systems issues facing electron ics engineers or computer programmers. The mid-1980s witnessed a major change in the robotics field. The develop ment of advanced sensor systems (particularly vision), improvements in the intelligence area, and the desire to integrate groups of robots working together in local work cells or in factory-wide systems have greatly increased the partic ipation of electronics engineers and computer programmers. Further, as ro bots ga in mobility, they are being used in completely new areas, such as construction, firefighting, and underwater exploration, and the need for com puters and smart sensors has increased. Fundamentals af Rabaties Engineering is aimed at the practicing electrical engineer or computer analyst who needs to review the fundamentals of engi neering as applied to robotics and to understand the impact on system design caused by constraints unique to robotics. Because there are many good texts covering mechanical engineering topics, this book is limited to an overview of those topics and the effects they have on electrical design and system pro grams.

Vehicle Dynamics and Control

Vehicle Dynamics and Control Author Rajesh Rajamani
ISBN-10 9781461414322
Release 2011-12-21
Pages 498
Download Link Click Here

Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicles. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability control has been enhanced. The use of feedback control systems on automobiles is growing rapidly. This book is intended to serve as a useful resource to researchers who work on the development of such control systems, both in the automotive industry and at universities. The book can also serve as a textbook for a graduate level course on Vehicle Dynamics and Control.

Introduction to Contact Mechanics

Introduction to Contact Mechanics Author Anthony C. Fischer-Cripps
ISBN-10 9780387681887
Release 2007-04-08
Pages 226
Download Link Click Here

This book deals with the mechanics of solid bodies in contact, a subject intimately connected with such topics as fracture, hardness, and elasticity. Coverage begins with an introduction to the mechanical properties of materials, general fracture mechanics, and the fracture of brittle solids. It then provides a detailed description of indentation stress fields for both elastic and elastic-plastic contact. In addition, the book discusses the formation of Hertzian cone cracks in brittle materials, subsurface damage in ductile materials, and the meaning of hardness. Coverage concludes with an overview of practical methods of indentation testing.

Theory of Robot Control

Theory of Robot Control Author Carlos Canudas de Wit
ISBN-10 9781447115014
Release 2012-12-06
Pages 392
Download Link Click Here

A study of the latest research results in the theory of robot control, structured so as to echo the gradual development of robot control over the last fifteen years. In three major parts, the editors deal with the modelling and control of rigid and flexible robot manipulators and mobile robots. Most of the results on rigid robot manipulators in part I are now well established, while for flexible manipulators in part II, some problems still remain unresolved. Part III deals with the control of mobile robots, a challenging area for future research. The whole is rounded off with an appendix reviewing basic definitions and the mathematical background for control theory. The particular combination of topics makes this an invaluable source of information for both graduate students and researchers.

Motion Control of Underactuated Mechanical Systems

Motion Control of Underactuated Mechanical Systems Author Javier Moreno-Valenzuela
ISBN-10 9783319583198
Release 2017-07-11
Pages 223
Download Link Click Here

This volume is the first to present a unified perspective on the control of underactuated mechanical systems. Based on real-time implementation of parameter identification, this book provides a variety of algorithms for the Furuta pendulum and the inertia wheel pendulum, which are two-degrees-of-freedom mechanical systems. Specifically, this work addresses and solves the problem of motion control via trajectory tracking in one joint coordinate while another joint is regulated. Besides, discussions on extensions to higher degrees-of-freedom systems are given. The book, aimed at control engineers as well as graduate students, ranges from the problem of parameter identification of the studied systems to the practical implementation of sophisticated motion control algorithms. Offering real-world solutions to manage the control of underactuated systems, this book provides a concise tutorial on recent breakthroughs in the field, original procedures to achieve bounding of the error trajectories, convergence and gain tuning guidelines.

Advances in Mobile and Wireless Communications

Advances in Mobile and Wireless Communications Author István Frigyes
ISBN-10 9783540790419
Release 2008-05-31
Pages 408
Download Link Click Here

Lectori Salutem! This is another book – among the myriads – dealing with wireless communications. The reader might be aware: this topic is really among bestsellers in technology – bestsellers in technology itself and that in technical literature. Communications is one of the leading techniques in information society and mobile/wireless communications is one among the (maybe not more than two with optics the second) leading techniques in communications. Development of wireless communications was and is really spec- cular in the last decade of the 20th and first decade of the 21st century. Such topics as MIMO, wireless networking, security in the technological field, new business models in the service providing field, various applications in the users’ side, to mention a few only, were undergoing an unprecedented evolution. So it is not surprising that the number of conferences and the number of books in this field grows and grows, in a nearly unbounded way.

The Automotive Chassis

The Automotive Chassis Author Giancarlo Genta
ISBN-10 1402086768
Release 2008-12-11
Pages 627
Download Link Click Here

The aim of the book is to be a reference book in automotive technology, as far as automotive chassis (i.e. everything that is inside a vehicle except the engine and the body) is concerned. The book is a result of a decade of work heavily sponsored by the FIAT group (who supplied material, together with other automotive companies, and sponsored the work). The first volume deals with the design of automotive components and the second volume treats the various aspects of the design of a vehicle as a system.

Dynamic Response of Linear Mechanical Systems

Dynamic Response of Linear Mechanical Systems Author Jorge Angeles
ISBN-10 9781441910264
Release 2011-09-15
Pages 560
Download Link Click Here

Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation can be utilized for a variety of courses, including junior and senior-level vibration and linear mechanical analysis courses. The author connects, by means of a rigorous, yet intuitive approach, the theory of vibration with the more general theory of systems. The book features: A seven-step modeling technique that helps structure the rather unstructured process of mechanical-system modeling A system-theoretic approach to deriving the time response of the linear mathematical models of mechanical systems The modal analysis and the time response of two-degree-of-freedom systems—the first step on the long way to the more elaborate study of multi-degree-of-freedom systems—using the Mohr circle Simple, yet powerful simulation algorithms that exploit the linearity of the system for both single- and multi-degree-of-freedom systems Examples and exercises that rely on modern computational toolboxes for both numerical and symbolic computations as well as a Solutions Manual for instructors, with complete solutions of a sample of end-of-chapter exercises Chapters 3 and 7, on simulation, include in each “Exercises” section a set of miniprojects that require code-writing to implement the algorithms developed in these chapters

Introduction to Autonomous Mobile Robots

Introduction to Autonomous Mobile Robots Author Roland Siegwart
ISBN-10 9780262015356
Release 2011-02-18
Pages 453
Download Link Click Here

Machine generated contents note: |g 1. |t Introduction -- |g 1.1. |t Introduction -- |g 1.2. |t An Overview of the Book -- |g 2. |t Locomotion -- |g 2.1. |t Introduction -- |g 2.1.1. |t Key issues for locomotion -- |g 2.2. |t Legged Mobile Robots -- |g 2.2.1. |t Leg configurations and stability -- |g 2.2.2. |t Consideration of dynamics -- |g 2.2.3. |t Examples of legged robot locomotion -- |g 2.3. |t Wheeled Mobile Robots -- |g 2.3.1. |t Wheeled locomotion: The design space -- |g 2.3.2. |t Wheeled locomotion: Case studies -- |g 2.4. |t Aerial Mobile Robots -- |g 2.4.1. |t Introduction -- |g 2.4.2. |t Aircraft configurations -- |g 2.4.3. |t State of the art in autonomous VTOL -- |g 2.5. |t Problems -- |g 3. |t Mobile Robot Kinematics -- |g 3.1. |t Introduction -- |g 3.2. |t Kinematic Models and Constraints -- |g 3.2.1. |t Representing robot position -- |g 3.2.2. |t Forward kinematic models -- |g 3.2.3. |t Wheel kinematic constraints -- |g 3.2.4. |t Robot kinematic constraints -- |g 3.g 3.3. |t Mobile Robot Maneuverability -- |g 3.3.1. |t Degree of mobility -- |g 3.3.2. |t Degree of steerability -- |g 3.3.3. |t Robot maneuverability -- |g 3.4. |t Mobile Robot Workspace -- |g 3.4.1. |t Degrees of freedom -- |g 3.4.2. |t Holonomic robots -- |g 3.4.3. |t Path and trajectory considerations -- |g 3.5. |t Beyond Basic Kinematics -- |g 3.6. |t Motion Control (Kinematic Control) -- |g 3.6.1. |t Open loop control (trajectory-following) -- |g 3.6.2. |t Feedback control -- |g 3.7. |t Problems -- |g 4. |t Perception -- |g 4.1. |t Sensors for Mobile Robots -- |g 4.1.1. |t Sensor classification -- |g 4.1.2. |t Characterizing sensor performance -- |g 4.1.3. |t Representing uncertainty -- |g 4.1.4. |t Wheel/motor sensors -- |g 4.1.5. |t Heading sensors -- |g 4.1.6. |t Accelerometers -- |g 4.1.7. |t Inertial measurement unit (IMU) -- |g 4.1.8. |t Ground beacons -- |g 4.1.9. |t Active ranging -- |g 4.1.10. |t Motion/speed sensors -- |g 4.1.11. |t Vision sensors -- |g 4.2. |t Fundameng 4.2.5. |t Structure from stereo -- |g 4.2.6. |t Structure from motion -- |g 4.2.7. |t Motion and optical flow -- |g 4.2.8. |t Color tracking -- |g 4.3. |t Fundamentals of Image Processing -- |g 4.3.1. |t Image filtering -- |g 4.3.2. |t Edge detection -- |g 4.3.3. |t Computing image similarity -- |g 4.4. |t Feature Extraction -- |g 4.5. |t Image Feature Extraction: Interest Point Detectors -- |g 4.5.1. |t Introduction -- |g 4.5.2. |t Properties of the ideal feature detector -- |g 4.5.3. |t Corner detectors -- |g 4.5.4. |t Invariance to photometric and geometric changes -- |g 4.5.5. |t Blob detectors -- |g 4.6. |t Place Recognition -- |g 4.6.1. |t Introduction -- |g 4.6.2. |t From bag of features to visual words -- |g 4.6.3. |t Efficient location recognition by using an inverted file -- |g 4.6.4. |t Geometric verification for robust place recognition -- |g 4.6.5. |t Applications -- |g 4.6.6. |t Other image representations for place recognition -- |g 4.7. |t Feature Extraction Based ong 4.7.3. |t Range histogram features -- |g 4.7.4. |t Extracting other geometric features -- |g 4.8. |t Problems -- |g 5. |t Mobile Robot Localization -- |g 5.1. |t Introduction -- |g 5.2. |t The Challenge of Localization: Noise and Aliasing -- |g 5.2.1. |t Sensor noise -- |g 5.2.2. |t Sensor aliasing -- |g 5.2.3. |t Effector noise -- |g 5.2.4. |t An error model for odometric position estimation -- |g 5.3. |t To Localize or Not to Localize: Localization-Based Navigation Versus Programmed Solutions -- |g 5.4. |t Belief Representation -- |g 5.4.1. |t Single-hypothesis belief -- |g 5.4.2. |t Multiple-hypothesis belief -- |g 5.5. |t Map Representation -- |g 5.5.1. |t Continuous representations -- |g 5.5.2. |t Decomposition strategies -- |g 5.5.3. |t State of the art: Current challenges in map representation -- |g 5.6. |t Probabilistic Map-Based Localization -- |g 5.6.1. |t Introduction -- |g 5.6.2. |t The robot localization problem -- |g 5.6.3. |t Basic concepts of probability theory -- |gg 5.6.6. |t Classification of localization problems -- |g 5.6.7. |t Markov localization -- |g 5.6.8. |t Kalman filter localization -- |g 5.7. |t Other Examples of Localization Systems -- |g 5.7.1. |t Landmark-based navigation -- |g 5.7.2. |t Globally unique localization -- |g 5.7.3. |t Positioning beacon systems -- |g 5.7.4. |t Route-based localization -- |g 5.8. |t Autonomous Map Building -- |g 5.8.1. |t Introduction -- |g 5.8.2. |t SLAM: The simultaneous localization and mapping problem -- |g 5.8.3. |t Mathematical definition of SLAM -- |g 5.8.4. |t Extended Kalman Filter (EKF) SLAM -- |g 5.8.5. |t Visual SLAM with a single camera -- |g 5.8.6. |t Discussion on EKF SLAM -- |g 5.8.7. |t Graph-based SLAM -- |g 5.8.8. |t Particle filter SLAM -- |g 5.8.9. |t Open challenges in SLAM -- |g 5.8.10. |t Open source SLAM software and other resources -- |g 5.9. |t Problems -- |g 6. |t Planning and Navigation -- |g 6.1. |t Introduction -- |g 6.2. |t Competences for Navigation: Planning and Reactig 6.4. |t Obstacle avoidance -- |g 6.4.1. |t Bug algorithm -- |g 6.4.2. |t Vector field histogram -- |g 6.4.3. |t The bubble band technique -- |g 6.4.4. |t Curvature velocity techniques -- |g 6.4.5. |t Dynamic window approaches -- |g 6.4.6. |t The Schlegel approach to obstacle avoidance -- |g 6.4.7. |t Nearness diagram -- |g 6.4.8. |t Gradient method -- |g 6.4.9. |t Adding dynamic constraints -- |g 6.4.10. |t Other approaches -- |g 6.4.11. |t Overview -- |g 6.5. |t Navigation Architectures -- |g 6.5.1. |t Modularity for code reuse and sharing -- |g 6.5.2. |t Control localization -- |g 6.5.3. |t Techniques for decomposition -- |g 6.5.4. |t Case studies: tiered robot architectures -- |g 6.6. |t Problems -- |t Bibliography -- |t Books -- |t Papers -- |t Referenced Webpages.