Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Gaussian Measures

Gaussian Measures Author Vladimir I. Bogachev
ISBN-10 9781470418694
Release 2015-01-26
Pages 433
Download Link Click Here

This book gives a systematic exposition of the modern theory of Gaussian measures. It presents with complete and detailed proofs fundamental facts about finite and infinite dimensional Gaussian distributions. Covered topics include linear properties, convexity, linear and nonlinear transformations, and applications to Gaussian and diffusion processes. Suitable for use as a graduate text and/or a reference work, this volume contains many examples, exercises, and an extensive bibliography. It brings together many results that have not appeared previously in book form.



The Concentration of Measure Phenomenon

The Concentration of Measure Phenomenon Author Michel Ledoux
ISBN-10 9780821837924
Release 2005
Pages 181
Download Link Click Here

It was undoubtedly a necessary task to collect all the results on the concentration of measure during the past years in a monograph. The author did this very successfully and the book is an important contribution to the topic. It will surely influence further research in this area considerably. The book is very well written, and it was a great pleasure for the reviewer to read it. --Mathematical Reviews The observation of the concentration of measure phenomenon is inspired by isoperimetric inequalities. A familiar example is the way the uniform measure on the standard sphere $S^n$ becomes concentrated around the equator as the dimension gets large. This property may be interpreted in terms of functions on the sphere with small oscillations, an idea going back to Levy. The phenomenon also occurs in probability, as a version of the law of large numbers, due to Emile Borel. This book offers the basic techniques and examples of the concentration of measure phenomenon. The concentration of measure phenomenon was put forward in the early seventies by V. Milman in the asymptotic geometry of Banach spaces. It is of powerful interest in applications in various areas, such as geometry, functional analysis and infinite-dimensional integration, discrete mathematics and complexity theory, and probability theory. Particular emphasis is on geometric, functional, and probabilistic tools to reach and describe measure concentration in a number of settings. The book presents concentration functions and inequalities, isoperimetric and functional examples, spectrum and topological applications, product measures, entropic and transportation methods, as well as aspects of M. Talagrand's deep investigation of concentration in product spaces and its application in discrete mathematics and probability theory, supremum of Gaussian and empirical processes, spin glass, random matrices, etc. Prerequisites are a basic background in measure theory, functional analysis, and probability theory.



Differentiable Measures and the Malliavin Calculus

Differentiable Measures and the Malliavin Calculus Author Vladimir Igorevich Bogachev
ISBN-10 9780821849934
Release 2010-07-21
Pages 488
Download Link Click Here

This book provides the reader with the principal concepts and results related to differential properties of measures on infinite dimensional spaces. In the finite dimensional case such properties are described in terms of densities of measures with respect to Lebesgue measure. In the infinite dimensional case new phenomena arise. For the first time a detailed account is given of the theory of differentiable measures, initiated by S. V. Fomin in the 1960s; since then the method has found many various important applications. Differentiable properties are described for diverse concrete classes of measures arising in applications, for example, Gaussian, convex, stable, Gibbsian, and for distributions of random processes. Sobolev classes for measures on finite and infinite dimensional spaces are discussed in detail. Finally, we present the main ideas and results of the Malliavin calculus--a powerful method to study smoothness properties of the distributions of nonlinear functionals on infinite dimensional spaces with measures. The target readership includes mathematicians and physicists whose research is related to measures on infinite dimensional spaces, distributions of random processes, and differential equations in infinite dimensional spaces. The book includes an extensive bibliography on the subject.



Function Spaces in Analysis

Function Spaces in Analysis Author Krzysztof Jarosz
ISBN-10 9781470416942
Release 2015-07-28
Pages 301
Download Link Click Here

This volume contains the proceedings of the Seventh Conference on Function Spaces, which was held from May 20-24, 2014 at Southern Illinois University at Edwardsville. The papers cover a broad range of topics, including spaces and algebras of analytic functions of one and of many variables (and operators on such spaces), spaces of integrable functions, spaces of Banach-valued functions, isometries of function spaces, geometry of Banach spaces, and other related subjects.



From Particle Systems to Partial Differential Equations II

From Particle Systems to Partial Differential Equations II Author Patrícia Gonçalves
ISBN-10 9783319166377
Release 2015-04-04
Pages 393
Download Link Click Here

This book focuses on mathematical problems concerning different applications in physics, engineering, chemistry and biology. It covers topics ranging from interacting particle systems to partial differential equations (PDEs), statistical mechanics and dynamical systems. The purpose of the second meeting on Particle Systems and PDEs was to bring together renowned researchers working actively in the respective fields, to discuss their topics of expertise and to present recent scientific results in both areas. Further, the meeting was intended to present the subject of interacting particle systems, its roots in and impacts on the field of physics and its relation with PDEs to a vast and varied public, including young researchers. The book also includes the notes from two mini-courses presented at the conference, allowing readers who are less familiar with these areas of mathematics to more easily approach them. The contributions will be of interest to mathematicians, theoretical physicists and other researchers interested in interacting particle systems, partial differential equations, statistical mechanics, stochastic processes, kinetic theory, dynamical systems and mathematical modeling aspects.



Analysis on Gaussian Spaces

Analysis on Gaussian Spaces Author Yaozhong Hu
ISBN-10 9789813142190
Release 2016-08-30
Pages 484
Download Link Click Here

Analysis of functions on the finite dimensional Euclidean space with respect to the Lebesgue measure is fundamental in mathematics. The extension to infinite dimension is a great challenge due to the lack of Lebesgue measure on infinite dimensional space. Instead the most popular measure used in infinite dimensional space is the Gaussian measure, which has been unified under the terminology of "abstract Wiener space". Out of the large amount of work on this topic, this book presents some fundamental results plus recent progress. We shall present some results on the Gaussian space itself such as the Brunn–Minkowski inequality, Small ball estimates, large tail estimates. The majority part of this book is devoted to the analysis of nonlinear functions on the Gaussian space. Derivative, Sobolev spaces are introduced, while the famous Poincaré inequality, logarithmic inequality, hypercontractive inequality, Meyer's inequality, Littlewood–Paley–Stein–Meyer theory are given in details. This book includes some basic material that cannot be found elsewhere that the author believes should be an integral part of the subject. For example, the book includes some interesting and important inequalities, the Littlewood–Paley–Stein–Meyer theory, and the Hörmander theorem. The book also includes some recent progress achieved by the author and collaborators on density convergence, numerical solutions, local times.



Random Fields and Geometry

Random Fields and Geometry Author R. J. Adler
ISBN-10 0387481168
Release 2009-01-29
Pages 454
Download Link Click Here

This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in which problems arising in geometry and probability are beautifully intertwined. "Random Fields and Geometry" will be useful for probabilists and statisticians, and for theoretical and applied mathematicians who wish to learn about new relationships between geometry and probability. It will be helpful for graduate students in a classroom setting, or for self-study. Finally, this text will serve as a basic reference for all those interested in the companion volume of the applications of the theory.



The Semicircle Law Free Random Variables and Entropy

The Semicircle Law  Free Random Variables and Entropy Author Fumio Hiai
ISBN-10 9780821841358
Release 2006-03-23
Pages 376
Download Link Click Here

The book treats free probability theory, which has been extensively developed since the early 1980s. The emphasis is put on entropy and the random matrix model approach. The volume is a unique presentation demonstrating the extensive interrelation between the topics. Wigner's theorem and its broad generalizations, such as asymptotic freeness of independent matrices, are explained in detail. Consistent throughout the book is the parallelism between the normal and semicircle laws. Voiculescu's multivariate free entropy theory is presented with full proofs and extends the results to unitary operators. Some applications to operator algebras are also given. Based on lectures given by the authors in Hungary, Japan, and Italy, the book is a good reference for mathematicians interested in free probability theory and can serve as a text for an advanced graduate course.



Asymptotic Geometric Analysis

Asymptotic Geometric Analysis Author Monika Ludwig
ISBN-10 9781461464068
Release 2013-03-27
Pages 395
Download Link Click Here

Asymptotic Geometric Analysis is concerned with the geometric and linear properties of finite dimensional objects, normed spaces, and convex bodies, especially with the asymptotics of their various quantitative parameters as the dimension tends to infinity. The deep geometric, probabilistic, and combinatorial methods developed here are used outside the field in many areas of mathematics and mathematical sciences. The Fields Institute Thematic Program in the Fall of 2010 continued an established tradition of previous large-scale programs devoted to the same general research direction. The main directions of the program included: * Asymptotic theory of convexity and normed spaces * Concentration of measure and isoperimetric inequalities, optimal transportation approach * Applications of the concept of concentration * Connections with transformation groups and Ramsey theory * Geometrization of probability * Random matrices * Connection with asymptotic combinatorics and complexity theory These directions are represented in this volume and reflect the present state of this important area of research. It will be of benefit to researchers working in a wide range of mathematical sciences—in particular functional analysis, combinatorics, convex geometry, dynamical systems, operator algebras, and computer science.



Alice and Bob Meet Banach The Interface of Asymptotic Geometric Analysis and Quantum Information Theory

Alice and Bob Meet Banach  The Interface of Asymptotic Geometric Analysis and Quantum Information Theory Author Guillaume Aubrun
ISBN-10 9781470434687
Release 2017-08-30
Pages 414
Download Link Click Here

The quest to build a quantum computer is arguably one of the major scientific and technological challenges of the twenty-first century, and quantum information theory (QIT) provides the mathematical framework for that quest. Over the last dozen or so years, it has become clear that quantum information theory is closely linked to geometric functional analysis (Banach space theory, operator spaces, high-dimensional probability), a field also known as asymptotic geometric analysis (AGA). In a nutshell, asymptotic geometric analysis investigates quantitative properties of convex sets, or other geometric structures, and their approximate symmetries as the dimension becomes large. This makes it especially relevant to quantum theory, where systems consisting of just a few particles naturally lead to models whose dimension is in the thousands, or even in the billions. Alice and Bob Meet Banach is aimed at multiple audiences connected through their interest in the interface of QIT and AGA: at quantum information researchers who want to learn AGA or apply its tools; at mathematicians interested in learning QIT, or at least the part of QIT that is relevant to functional analysis/convex geometry/random matrix theory and related areas; and at beginning researchers in either field. Moreover, this user-friendly book contains numerous tables and explicit estimates, with reasonable constants when possible, which make it a useful reference even for established mathematicians generally familiar with the subject.



Uniform Distribution of Sequences

Uniform Distribution of Sequences Author L. Kuipers
ISBN-10 9780486149998
Release 2012-05-24
Pages 416
Download Link Click Here

The theory of uniform distribution began with Weyl's celebrated paper of 1916 and this book summarizes its development through the mid-1970s, with comprehensive coverage of methods and principles. 1974 edition.



Probability in Banach Spaces

Probability in Banach Spaces Author Michel Ledoux
ISBN-10 9783642202124
Release 2013-03-09
Pages 480
Download Link Click Here

Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements. The main features of the investigation are the systematic use of isoperimetry and concentration of measure and abstract random process techniques (entropy and majorizing measures). Examples of these probabilistic tools and ideas to classical Banach space theory are further developed.



Stochastic Partial Differential Equations

Stochastic Partial Differential Equations Author René Carmona
ISBN-10 0821808060
Release 1999
Pages 334
Download Link Click Here

The field of Stochastic Partial Differential Equations (SPDEs) is one of the most dynamically developing areas of mathematics. It lies at the cross section of probability, partial differential equations, population biology, and mathematical physics. The field is especially attractive because of its interdisciplinary nature and the enormous richness of current and potential future applications. This volume is a collection of six important topics in SPDEs presented from the viewpoint of distinguished scientists working in the field and related areas. Emphasized are the genesis and applications of SPDEs as well as mathematical theory and numerical methods.



Ergodic Theory via Joinings

Ergodic Theory via Joinings Author Eli Glasner
ISBN-10 9781470419516
Release 2015-01-09
Pages 384
Download Link Click Here

This book introduces modern ergodic theory. It emphasizes a new approach that relies on the technique of joining two (or more) dynamical systems. This approach has proved to be fruitful in many recent works, and this is the first time that the entire theory is presented from a joining perspective. Another new feature of the book is the presentation of basic definitions of ergodic theory in terms of the Koopman unitary representation associated with a dynamical system and the invariant mean on matrix coefficients, which exists for any acting groups, amenable or not. Accordingly, the first part of the book treats the ergodic theory for an action of an arbitrary countable group. The second part, which deals with entropy theory, is confined (for the sake of simplicity) to the classical case of a single measure-preserving transformation on a Lebesgue probability space.



Tools for PDE

Tools for PDE Author Michael Eugene Taylor
ISBN-10 9780821843789
Release 2007
Pages 257
Download Link Click Here

This book develops three related tools that are useful in the analysis of partial differential equations (PDEs), arising from the classical study of singular integral operators: pseudodifferential operators, paradifferential operators, and layer potentials. A theme running throughout the work is the treatment of PDE in the presence of relatively little regularity. The first chapter studies classes of pseudodifferential operators whose symbols have a limited degree of regularity; the second chapter shows how paradifferential operators yield sharp estimates on the action of various nonlinear operators on function spaces. The third chapter applies this material to an assortment of results in PDE, including regularity results for elliptic PDE with rough coefficients, planar fluid flows on rough domains, estimates on Riemannian manifolds given weak bounds on Ricci tensor, div-curl estimates, and results on propagation of singularities for wave equations with rough coefficients. The last chapter studies the method of layer potentials on Lipschitz domains, concentrating on applications to boundary problems for elliptic PDE with variable coefficients.



Geometry of Isotropic Convex Bodies

Geometry of Isotropic Convex Bodies Author Silouanos Brazitikos
ISBN-10 9781470414566
Release 2014-04-24
Pages 594
Download Link Click Here

The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lovász-Simonovits conjecture. This book provides a self-contained and up to date account of the progress that has been made in the last fifteen years.



Upper and Lower Bounds for Stochastic Processes

Upper and Lower Bounds for Stochastic Processes Author Michel Talagrand
ISBN-10 9783642540752
Release 2014-02-12
Pages 626
Download Link Click Here

The book develops modern methods and in particular the "generic chaining" to bound stochastic processes. This methods allows in particular to get optimal bounds for Gaussian and Bernoulli processes. Applications are given to stable processes, infinitely divisible processes, matching theorems, the convergence of random Fourier series, of orthogonal series, and to functional analysis. The complete solution of a number of classical problems is given in complete detail, and an ambitious program for future research is laid out.