Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Gaussian Measures

Gaussian Measures Author Vladimir I. Bogachev
ISBN-10 9781470418694
Release 2015-01-26
Pages 433
Download Link Click Here

This book gives a systematic exposition of the modern theory of Gaussian measures. It presents with complete and detailed proofs fundamental facts about finite and infinite dimensional Gaussian distributions. Covered topics include linear properties, convexity, linear and nonlinear transformations, and applications to Gaussian and diffusion processes. Suitable for use as a graduate text and/or a reference work, this volume contains many examples, exercises, and an extensive bibliography. It brings together many results that have not appeared previously in book form.

Function Spaces in Analysis

Function Spaces in Analysis Author Krzysztof Jarosz
ISBN-10 9781470416942
Release 2015-07-28
Pages 301
Download Link Click Here

This volume contains the proceedings of the Seventh Conference on Function Spaces, which was held from May 20-24, 2014 at Southern Illinois University at Edwardsville. The papers cover a broad range of topics, including spaces and algebras of analytic functions of one and of many variables (and operators on such spaces), spaces of integrable functions, spaces of Banach-valued functions, isometries of function spaces, geometry of Banach spaces, and other related subjects.

From Particle Systems to Partial Differential Equations II

From Particle Systems to Partial Differential Equations II Author Patrícia Gonçalves
ISBN-10 9783319166377
Release 2015-04-04
Pages 393
Download Link Click Here

This book focuses on mathematical problems concerning different applications in physics, engineering, chemistry and biology. It covers topics ranging from interacting particle systems to partial differential equations (PDEs), statistical mechanics and dynamical systems. The purpose of the second meeting on Particle Systems and PDEs was to bring together renowned researchers working actively in the respective fields, to discuss their topics of expertise and to present recent scientific results in both areas. Further, the meeting was intended to present the subject of interacting particle systems, its roots in and impacts on the field of physics and its relation with PDEs to a vast and varied public, including young researchers. The book also includes the notes from two mini-courses presented at the conference, allowing readers who are less familiar with these areas of mathematics to more easily approach them. The contributions will be of interest to mathematicians, theoretical physicists and other researchers interested in interacting particle systems, partial differential equations, statistical mechanics, stochastic processes, kinetic theory, dynamical systems and mathematical modeling aspects.

Analysis on Gaussian Spaces

Analysis on Gaussian Spaces Author Yaozhong Hu
ISBN-10 9789813142190
Release 2016-08-30
Pages 484
Download Link Click Here

Analysis of functions on the finite dimensional Euclidean space with respect to the Lebesgue measure is fundamental in mathematics. The extension to infinite dimension is a great challenge due to the lack of Lebesgue measure on infinite dimensional space. Instead the most popular measure used in infinite dimensional space is the Gaussian measure, which has been unified under the terminology of "abstract Wiener space". Out of the large amount of work on this topic, this book presents some fundamental results plus recent progress. We shall present some results on the Gaussian space itself such as the Brunn–Minkowski inequality, Small ball estimates, large tail estimates. The majority part of this book is devoted to the analysis of nonlinear functions on the Gaussian space. Derivative, Sobolev spaces are introduced, while the famous Poincaré inequality, logarithmic inequality, hypercontractive inequality, Meyer's inequality, Littlewood–Paley–Stein–Meyer theory are given in details. This book includes some basic material that cannot be found elsewhere that the author believes should be an integral part of the subject. For example, the book includes some interesting and important inequalities, the Littlewood–Paley–Stein–Meyer theory, and the Hörmander theorem. The book also includes some recent progress achieved by the author and collaborators on density convergence, numerical solutions, local times.

Interest Rate Models an Infinite Dimensional Stochastic Analysis Perspective

Interest Rate Models  an Infinite Dimensional Stochastic Analysis Perspective Author René Carmona
ISBN-10 9783540270676
Release 2007-05-22
Pages 236
Download Link Click Here

This book presents the mathematical issues that arise in modeling the interest rate term structure by casting the interest-rate models as stochastic evolution equations in infinite dimensions. The text includes a crash course on interest rates, a self-contained introduction to infinite dimensional stochastic analysis, and recent results in interest rate theory. From the reviews: "A wonderful book. The authors present some cutting-edge math." --WWW.RISKBOOK.COM

Festschrift Masatoshi Fukushima

Festschrift Masatoshi Fukushima Author Zhen-Qing Chen
ISBN-10 9789814596541
Release 2014-11-27
Pages 620
Download Link Click Here

This book contains original research papers by leading experts in the fields of probability theory, stochastic analysis, potential theory and mathematical physics. There is also a historical account on Masatoshi Fukushima's contribution to mathematics, as well as authoritative surveys on the state of the art in the field. Contents:Professor Fukushima's Work:The Mathematical Work of Masatoshi Fukushima — An Essay (Zhen-Qing Chen, Niels Jacob, Masayoshi Takeda and Toshihiro Uemura)Bibliography of Masatoshi FukushimaContributions:Quasi Regular Dirichlet Forms and the Stochastic Quantization Problem (Sergio Albeverio, Zhi-Ming Ma and Michael Röckner)Comparison of Quenched and Annealed Invariance Principles for Random Conductance Model: Part II (Martin Barlow, Krzysztof Burdzy and Adám Timár)Some Historical Aspects of Error Calculus by Dirichlet Forms (Nicolas Bouleau)Stein's Method, Malliavin Calculus, Dirichlet Forms and the Fourth Moment Theorem (Louis H Y Chen and Guillaume Poly)Progress on Hardy-Type Inequalities (Mu-Fa Chen)Functional Inequalities for Pure-Jump Dirichlet Forms (Xin Chen, Feng-Yu Wang and Jian Wang)Additive Functionals and Push Forward Measures Under Veretennikov's Flow (Shizan Fang and Andrey Pilipenko)On a Result of D W Stroock (Patrick J Fitzsimmons)Consistent Risk Measures and a Non-Linear Extension of Backwards Martingale Convergence (Hans Föllmer and Irina Penner)Unavoidable Collections of Balls for Processes with Isotropic Unimodal Green Function (Wolfhard Hansen)Functions of Locally Bounded Variation on Wiener Spaces (Masanori Hino)A Dirichlet Space on Ends of Tree and Superposition of Nodewise Given Dirichlet Forms with Tier Linkage (Hiroshi Kaneko)Dirichlet Forms in Quantum Theory (Witold Karwowski and Ludwig Streit)On a Stability of Heat Kernel Estimates under Generalized Non-Local Feynman-Kac Perturbations for Stable-Like Processes (Daehong Kim and Kazuhiro Kuwae)Martin Boundary for Some Symmetric Lévy Processes (Panki Kim, Renming Song and Zoran Vondraček)Level Statistics of One-Dimensional Schrödinger Operators with Random Decaying Potential (Shinichi Kotani and Fumihiko Nakano)Perturbation of the Loop Measure (Yves Le Jan and Jay Rosen)Regular Subspaces of Dirichlet Forms (Liping Li and Jiangang Ying)Quasi-Regular Semi-Dirichlet Forms and Beyond (Zhi-Ming Ma, Wei Sun and Li-Fei Wang)Large Deviation Estimates for Controlled Semi-Martingales (Hideo Nagai)A Comparison Theorem for Backward SPDEs with Jumps (Bernt Øksendal, Agnès Sulem and Tusheng Zhang)On a Construction of a Space-Time Diffusion Process with Boundary Condition (Yoichi Oshima)Lower Bounded Semi-Dirichlet Forms Associated with Lévy Type Operators (René L Schilling and Jian Wang)Ultracontractivity for Non-Symmetric Markovian Semigroups (Ichiro Shigekawa)Metric Measure Spaces with Variable Ricci Bounds and Couplings of Brownian Motions (Karl-Theodor Sturm)Intrinsic Ultracontractivity and Semi-Small Perturbation for Skew Product Diffusion Operators (Matsuyo Tomisaki) Readership: Researchers in probability, stochastic analysis and mathematical physics. Key Features:Research papers by leading expertsHistorical account of M Fukushima's contribution to mathematicsAuthoritative surveys on the state of the art in the fieldKeywords:Probability Theory;Markov Processes;Dirichlet Forms;Potential Theory;Mathematical Physics

S minaire de Probabilit s XLIII

S  minaire de Probabilit  s XLIII Author Catherine Donati-Martin
ISBN-10 9783642152160
Release 2011
Pages 503
Download Link Click Here

Annotation This fresh addition to the series started in the 1960s follows the Seminaire's tradition, containing original research and survey articles on topics related to stochastic analysis. These include stochastic calculus and differential geometry, among many others.

Stochastic Processes

Stochastic Processes Author D. N. Shanbhag
ISBN-10 0444500146
Release 2001
Pages 967
Download Link Click Here

Hardbound. J. Neyman, one of the pioneers in laying the foundations of modern statistical theory, stressed the importance of stochastic processes in a paper written in 1960 in the following terms: Currently in the period of dynamic indeterminism in science, there is hardly a serious piece of research, if treated realistically, does not involve operations on stochastic processes. Arising from the need to solve practical problems, several major advances have taken place in the theory of stochastic processes and their applications. Books by Doob (1953; J. Wiley and Sons), Feller (1957, 1966; J. Wiley and Sons) and Loeve (1960; D. van Nostrand and Col., Inc.) among others, have created growing awareness and interest in the use of stochastic processes in scientific and technological studies.The literature on stochastic processes is very extensive and is distributed in several books and journals. There is a need to review the different lines of

Analysis and Geometry of Markov Diffusion Operators

Analysis and Geometry of Markov Diffusion Operators Author Dominique Bakry
ISBN-10 9783319002279
Release 2013-11-18
Pages 552
Download Link Click Here

The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.

Young Measures on Topological Spaces

Young Measures on Topological Spaces Author Charles Castaing
ISBN-10 9781402019647
Release 2006-04-11
Pages 320
Download Link Click Here

Young Measures on Topological Spaces has been writing in one form or another for most of life. You can find so many inspiration from Young Measures on Topological Spaces also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Young Measures on Topological Spaces book for free.

Malliavin Calculus for L vy Processes and Infinite Dimensional Brownian Motion

Malliavin Calculus for L  vy Processes and Infinite Dimensional Brownian Motion Author Horst Osswald
ISBN-10 9781107016149
Release 2012-03-01
Pages 407
Download Link Click Here

After functional, measure and stochastic analysis prerequisites, the author covers chaos decomposition, Skorohod integral processes, Malliavin derivative and Girsanov transformations.

Convexity and Concentration

Convexity and Concentration Author Eric Carlen
ISBN-10 9781493970056
Release 2017-04-20
Pages 626
Download Link Click Here

This volume presents some of the research topics discussed at the 2014-2015 Annual Thematic Program Discrete Structures: Analysis and Applications at the Institute of Mathematics and its Applications during the Spring 2015 where geometric analysis, convex geometry and concentration phenomena were the focus. Leading experts have written surveys of research problems, making state of the art results more conveniently and widely available. The volume is organized into two parts. Part I contains those contributions that focus primarily on problems motivated by probability theory, while Part II contains those contributions that focus primarily on problems motivated by convex geometry and geometric analysis. This book will be of use to those who research convex geometry, geometric analysis and probability directly or apply such methods in other fields.

Sobolev Spaces on Metric Measure Spaces

Sobolev Spaces on Metric Measure Spaces Author Juha Heinonen
ISBN-10 9781316241035
Release 2015-02-05
Download Link Click Here

Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov–Hausdorff convergence, and the Keith–Zhong self-improvement theorem for Poincaré inequalities.

Random Fields and Geometry

Random Fields and Geometry Author R. J. Adler
ISBN-10 0387481168
Release 2009-01-29
Pages 454
Download Link Click Here

This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in which problems arising in geometry and probability are beautifully intertwined. "Random Fields and Geometry" will be useful for probabilists and statisticians, and for theoretical and applied mathematicians who wish to learn about new relationships between geometry and probability. It will be helpful for graduate students in a classroom setting, or for self-study. Finally, this text will serve as a basic reference for all those interested in the companion volume of the applications of the theory.

Mathematics of Two Dimensional Turbulence

Mathematics of Two Dimensional Turbulence Author Sergei Kuksin
ISBN-10 9781107022829
Release 2012-09-20
Pages 320
Download Link Click Here

Presents recent progress in two-dimensional mathematical hydrodynamics, including rigorous results on turbulence in space-periodic fluid flows.

The Concentration of Measure Phenomenon

The Concentration of Measure Phenomenon Author Michel Ledoux
ISBN-10 9780821837924
Release 2005
Pages 181
Download Link Click Here

It was undoubtedly a necessary task to collect all the results on the concentration of measure during the past years in a monograph. The author did this very successfully and the book is an important contribution to the topic. It will surely influence further research in this area considerably. The book is very well written, and it was a great pleasure for the reviewer to read it. --Mathematical Reviews The observation of the concentration of measure phenomenon is inspired by isoperimetric inequalities. A familiar example is the way the uniform measure on the standard sphere $S^n$ becomes concentrated around the equator as the dimension gets large. This property may be interpreted in terms of functions on the sphere with small oscillations, an idea going back to Levy. The phenomenon also occurs in probability, as a version of the law of large numbers, due to Emile Borel. This book offers the basic techniques and examples of the concentration of measure phenomenon. The concentration of measure phenomenon was put forward in the early seventies by V. Milman in the asymptotic geometry of Banach spaces. It is of powerful interest in applications in various areas, such as geometry, functional analysis and infinite-dimensional integration, discrete mathematics and complexity theory, and probability theory. Particular emphasis is on geometric, functional, and probabilistic tools to reach and describe measure concentration in a number of settings. The book presents concentration functions and inequalities, isoperimetric and functional examples, spectrum and topological applications, product measures, entropic and transportation methods, as well as aspects of M. Talagrand's deep investigation of concentration in product spaces and its application in discrete mathematics and probability theory, supremum of Gaussian and empirical processes, spin glass, random matrices, etc. Prerequisites are a basic background in measure theory, functional analysis, and probability theory.

Absolute Continuity Under Time Shift of Trajectories and Related Stochastic Calculus

Absolute Continuity Under Time Shift of Trajectories and Related Stochastic Calculus Author Jörg-Uwe Löbus
ISBN-10 9781470426033
Release 2017-09-25
Pages 135
Download Link Click Here

The text is concerned with a class of two-sided stochastic processes of the form . Here is a two-sided Brownian motion with random initial data at time zero and is a function of . Elements of the related stochastic calculus are introduced. In particular, the calculus is adjusted to the case when is a jump process. Absolute continuity of under time shift of trajectories is investigated. For example under various conditions on the initial density with respect to the Lebesgue measure, , and on with we verify i.e. where the product is taken over all coordinates. Here is the divergence of with respect to the initial position. Crucial for this is the temporal homogeneity of in the sense that , , where is the trajectory taking the constant value . By means of such a density, partial integration relative to a generator type operator of the process is established. Relative compactness of sequences of such processes is established.