Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Graphene

Graphene Author Zhaoping Liu
ISBN-10 9781482203769
Release 2014-11-24
Pages 318
Download Link Click Here

Suitable for readers from broad backgrounds, Graphene: Energy Storage and Conversion Applications describes the fundamentals and cutting-edge applications of graphene-based materials for energy storage and conversion systems. It provides an overview of recent advancements in specific energy technologies, such as lithium ion batteries, supercapacitors, fuel cells, solar cells, lithium sulfur batteries, and lithium air batteries. It also considers the outlook of industrial applications in the near future. Offering a brief introduction to the major synthesis methods of graphene, the text details the latest academic and commercial research and developments, covering all potential avenues for graphene’s use in energy-related areas.



Carbons for Electrochemical Energy Storage and Conversion Systems

Carbons for Electrochemical Energy Storage and Conversion Systems Author Francois Beguin
ISBN-10 1420055402
Release 2009-11-18
Pages 529
Download Link Click Here

As carbons are widely used in energy storage and conversion systems, there is a rapidly growing need for an updated book that describes their physical, chemical, and electrochemical properties. Edited by those responsible for initiating the most progressive conference on Carbon for Energy Storage and Environment Protection (CESEP), this book undoubtedly fills this need. Written in collaboration with prominent scientists in carbon science and its energy-related applications, Carbons for Electrochemical Energy Storage and Conversion Systems provides the most complete and up-to-date coverage available on carbon materials for application in electrochemical energy storage and conversion. The text studies different carbon materials and their detailed physicochemical properties and provides an in-depth review of their wide-ranging applications—including lithium-ion batteries, supercapacitors, fuel cells, and primary cells. Recognizing that most scientists involved with these applications are materials scientists rather than electrochemists, the text begins with a review of electrochemical principles and methods. It then covers the different forms of traditional sp2 carbons, introduces novel techniques for preparing advanced carbons, and describes the main physicochemical properties which control the electrochemical behavior of carbons. The second half of the book focuses on research and provides a wealth of original information on industrial applications. Complete with an abundance of figures, tables, equations, and case studies, this book is the ideal one-stop reference for researchers, engineers, and students working on developing the carbon-based energy storage and conversion systems of tomorrow.



Electrochemical Technologies for Energy Storage and Conversion

Electrochemical Technologies for Energy Storage and Conversion Author
ISBN-10 9783527328697
Release 2012
Pages 382
Download Link Click Here

Electrochemical Technologies for Energy Storage and Conversion has been writing in one form or another for most of life. You can find so many inspiration from Electrochemical Technologies for Energy Storage and Conversion also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Electrochemical Technologies for Energy Storage and Conversion book for free.



Electrochemical Supercapacitors for Energy Storage and Delivery

Electrochemical Supercapacitors for Energy Storage and Delivery Author Aiping Yu
ISBN-10 9781439869901
Release 2013-04-09
Pages 373
Download Link Click Here

Although recognized as an important component of all energy storage and conversion technologies, electrochemical supercapacitators (ES) still face development challenges in order to reach their full potential. A thorough examination of development in the technology during the past decade, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications provides a comprehensive introduction to the ES from technical and practical aspects and crystallization of the technology, detailing the basics of ES as well as its components and characterization techniques. The book illuminates the practical aspects of understanding and applying the technology within the industry and provides sufficient technical detail of newer materials being developed by experts in the field which may surface in the future. The book discusses the technical challenges and the practical limitations and their associated parameters in ES technology. It also covers the structure and options for device packaging and materials choices such as electrode materials, electrolyte, current collector, and sealants based on comparison of available data. Supplying an in depth understanding of the components, design, and characterization of electrochemical supercapacitors, the book has wide-ranging appeal to industry experts and those new to the field. It can be used as a reference to apply to current work and a resource to foster ideas for new devices that will further the technology as it becomes a larger part of main stream energy storage.



Carbon Nanomaterials for Electrochemical Energy Technologies

Carbon Nanomaterials for Electrochemical Energy Technologies Author Shuhui Sun
ISBN-10 9781351648042
Release 2017-11-20
Pages 313
Download Link Click Here

This book offers comprehensive coverage of carbon-based nanomaterials and electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, and hydrogen generation and storage, as well as the latest material and new technology development. It addresses a variety of topics such as electrochemical processes, materials, components, assembly and manufacturing, degradation mechanisms, challenges, and strategies. With in-depth discussions ranging from electrochemistry fundamentals to engineering components and applied devices, this all-inclusive reference offers a broad view of various carbon nanomaterials and technologies for electrochemical energy conversion and storage devices.



High Temperature Electrochemical Energy Conversion and Storage

High Temperature Electrochemical Energy Conversion and Storage Author Yixiang Shi
ISBN-10 9781351332026
Release 2017-11-08
Pages 207
Download Link Click Here

As global demands for energy and lower carbon emissions rise, developing systems of energy conversion and storage becomes necessary. This book explores how Electrochemical Energy Storage and Conversion (EESC) devices are promising advanced power systems that can directly convert chemical energy in fuel into power, and thereby aid in proposing a solution to the global energy crisis. The book focuses on high-temperature electrochemical devices that have a wide variety of existing and potential applications, including the creation of fuel cells for power generation, production of high-purity hydrogen by electrolysis, high-purity oxygen by membrane separation, and various high-temperature batteries. High-Temperature Electrochemical Energy Conversion and Storage: Fundamentals and Applications provides a comprehensive view of the new technologies in high-temperature electrochemistry. Written in a clear and detailed manner, it is suitable for developers, researchers, or students of any level.



Graphene based Energy Devices

Graphene based Energy Devices Author A. Rashid bin Mohd Yusoff
ISBN-10 9783527690329
Release 2015-02-17
Pages 464
Download Link Click Here

This first book dedicated to the topic provides an up-to-date account of the many opportunities graphene offers for robust, workable energy generation and storage devices. Following a brief overview of the fundamentals of graphene, including the main synthesis techniques, characterization methods and properties, the first part goes on to deal with graphene for energy storage applications, such as lithium-ion batteries, supercapacitors and hydrogen storage. The second part is concerned with graphene-based energy-generation devices, in particular conventional as well as microbial and enzymatic fuel cells, with chapters on graphene photovoltaics rounding off the book. Throughout, device architectures are not only discussed on a laboratory scale, but also ways for upscaling to an industrial level, including manufacturing processes and quality control. By bridging academic research and industrial development this is invaluable reading for materials scientists, physical chemists, electrochemists, solid state physicists, and those working in the electrotechnical industry.



Nanocarbons for Advanced Energy Storage

Nanocarbons for Advanced Energy Storage Author Xinliang Feng
ISBN-10 9783527680085
Release 2015-03-20
Pages 480
Download Link Click Here

This first volume in the series on nanocarbons for advanced applications presents the latest achievements in the design, synthesis, characterization, and applications of these materials for electrochemical energy storage. The highly renowned series and volume editor, Xinliang Feng, has put together an internationally acclaimed expert team who covers nanocarbons such as carbon nanotubes, fullerenes, graphenes, and porous carbons. The first two parts focus on nanocarbon-based anode and cathode materials for lithium ion batteries, while the third part deals with carbon material-based supercapacitors with various applications in power electronics, automotive engineering and as energy storage elements in portable electric devices. This book will be indispensable for materials scientists, electrochemists, physical chemists, solid state physicists, and those working in the electrotechnical industry.



Carbon Nanomaterials for Electrochemical Energy Technologies

Carbon Nanomaterials for Electrochemical Energy Technologies Author Shuhui Sun
ISBN-10 9781351648042
Release 2017-11-20
Pages 313
Download Link Click Here

This book offers comprehensive coverage of carbon-based nanomaterials and electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, and hydrogen generation and storage, as well as the latest material and new technology development. It addresses a variety of topics such as electrochemical processes, materials, components, assembly and manufacturing, degradation mechanisms, challenges, and strategies. With in-depth discussions ranging from electrochemistry fundamentals to engineering components and applied devices, this all-inclusive reference offers a broad view of various carbon nanomaterials and technologies for electrochemical energy conversion and storage devices.



Surface Chemistry and Macroscopic Assembly of Graphene for Application in Energy Storage

Surface Chemistry and Macroscopic Assembly of Graphene for Application in Energy Storage Author Cheng-Meng Chen
ISBN-10 9783662486764
Release 2015-11-20
Pages 146
Download Link Click Here

This PhD thesis presents the latest findings on the tunable surface chemistry of graphene/graphene oxide by systematically investigating the tuning of oxygen and nitrogen containing functional groups using an innovative carbonization and ammonia treatment. In addition, novel macroscopic assemblies or hybrids of graphene were produced, laying the theoretical foundation for developing graphene-based energy storage devices. This work will be of interest to university researchers, R&D engineers and graduate students working with carbon materials, energy storage and nanotechnology.



Nanostructured Materials in Electrochemistry

Nanostructured Materials in Electrochemistry Author Ali Eftekhari
ISBN-10 9783527621514
Release 2008-06-25
Pages 489
Download Link Click Here

Providing the unique and vital link between the worlds of electrochemistry and nanomaterials, this reference and handbook covers advances in electrochemistry through the nanoscale control of electrode structures, as well as advances in nanotechnology through electrochemical synthesis strategies. It demonstrates how electrochemical methods are of great scientific and commercial interest due to their low cost and high efficiency, and includes the synthesis of nanowires, nanoparticles, nanoporous and layered nanomaterials of various compositions, as well as their applications -- ranging from superior electrode materials to energy storage, biosensors, and electroanalytical devices.



Liquid Cell Electron Microscopy

Liquid Cell Electron Microscopy Author
ISBN-10 9781107116573
Release
Pages
Download Link Click Here

Liquid Cell Electron Microscopy has been writing in one form or another for most of life. You can find so many inspiration from Liquid Cell Electron Microscopy also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Liquid Cell Electron Microscopy book for free.



Handbook of Research on Nanoscience Nanotechnology and Advanced Materials

Handbook of Research on Nanoscience  Nanotechnology  and Advanced Materials Author Bououdina, Mohamed
ISBN-10 9781466658257
Release 2014-03-31
Pages 617
Download Link Click Here

The burgeoning field of nanotechnology has led to many recent technological innovations and discoveries. Understanding the impact of these technologies on business, science, and industry is an important first step in developing applications for a variety of settings and contexts. Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials presents a detailed analysis of current experimental and theoretical approaches surrounding nanomaterials science. With applications in fields such as biomedicine, renewable energy, and synthetic materials, the research in this book will provide experimentalists, professionals, students, and academics with an in-depth understanding of nanoscience and its impact on modern technology.



Nanomaterials for Sustainable Energy

Nanomaterials for Sustainable Energy Author Quan Li
ISBN-10 9783319320236
Release 2016-05-12
Pages 590
Download Link Click Here

This book presents the unique mechanical, electrical, and optical properties of nanomaterials, which play an important role in the recent advances of energy-related applications. Different nanomaterials have been employed in energy saving, generation, harvest, conversion, storage, and transport processes very effectively and efficiently. Recent progress in the preparation, characterization and usage of 1D, 2D nanomaterials and hybrid architectures for energy-related applications and relevant technologies and devices, such as solar cells, thermoelectronics, piezoelectronics, solar water splitting, hydrogen production/storage, fuel cells, batteries, and supercapacitors is covered. Moreover, the book also highlights novel approaches in nanomaterials design and synthesis and evaluating materials sustainability issues. Contributions from active and leading experts regarding important aspects like the synthesis, assembly, and properties of nanomaterials for energy-related applications are compiled into a reference book. As evident from the diverse topics, the book will be very valuable to researchers working in the intersection of physics, chemistry, biology, materials science and engineering. It may set the standard and stimulates future developments in this rapidly emerging fertile frontier of nanomaterials for energy.



Vertically Oriented Graphene

Vertically Oriented Graphene Author Chen Junhong
ISBN-10 9783319153025
Release 2015-03-23
Pages 114
Download Link Click Here

This book introduces the basic concepts, synthesis techniques, and applications of vertically-oriented graphene. The authors detail emerging applications of vertically-oriented graphene such as field emitters, atmospheric nanoscale corona discharges, gas sensors and biosensors, supercapacitors, lithium-ion batteries, fuel cells (catalyst supports) and electrochemical transducers. They offer a perspective on current challenges to enabling commercial applications of vertically-oriented graphene.



Electrolytes for Electrochemical Supercapacitors

Electrolytes for Electrochemical Supercapacitors Author Cheng Zhong
ISBN-10 9781498747578
Release 2016-04-27
Pages 347
Download Link Click Here

Electrolytes for Electrochemical Supercapacitors provides a state-of-the-art overview of the research and development of novel electrolytes and electrolyte configurations and systems to increase the energy density of electrochemical supercapacitors. Comprised of chapters written by leading international scientists active in supercapacitor research and manufacturing, this authoritative text: Describes a variety of electrochemical supercapacitor electrolytes and their properties, compositions, and systems Compares different electrolytes in terms of their effects on electrochemical supercapacitor performance Examines the interplay between the electrolytes, active electrode materials, and inactive components of the supercapacitors Discusses the design and optimization of electrolyte systems for improving electrochemical supercapacitor performance Explores the challenges electrochemical supercapacitors currently face, offering unique insight into next-generation supercapacitor applications Thus, Electrolytes for Electrochemical Supercapacitors is a valuable resource for the research and development activities of academic researchers, graduate/undergraduate students, industry professionals, and manufacturers of electrode/electrolyte systems and electrochemical energy devices such as batteries, as well as for end users of the technology.



Nano Devices and Circuit Techniques for Low Energy Applications and Energy Harvesting

Nano Devices and Circuit Techniques for Low Energy Applications and Energy Harvesting Author Chong-Min Kyung
ISBN-10 9789401799904
Release 2015-07-16
Pages 291
Download Link Click Here

This book describes the development of core technologies to address two of the most challenging issues in research for future IT platform development, namely innovative device design and reduction of energy consumption. Three key devices, the FinFET, the TunnelFET, and the electromechanical nanoswitch are described with extensive details of use for practical applications. Energy issues are also covered in a tutorial fashion from material physics, through device technology, to innovative circuit design. The strength of this book lies in its holistic approach dealing with material trends, state-of-the-art of key devices, new examples of circuits and systems applications. This is the first of three books based on the Integrated Smart Sensors research project, which describe the development of innovative devices, circuits, and system-level enabling technologies. The aim of the project was to develop common platforms on which various devices and sensors can be loaded, and to create systems offering significant improvements in information processing speed, energy usage, and size. The book contains extensive reference lists and with over 200 figures introduces the reader to the general subject in a tutorial style, also addressing the state-of-the-art, allowing it to be used as a guide for starting researchers in these fields.