Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Green s Functions and Linear Differential Equations

Green   s Functions and Linear Differential Equations Author Prem K. Kythe
ISBN-10 9781439840092
Release 2011-01-21
Pages 382
Download Link Click Here

Green’s Functions and Linear Differential Equations: Theory, Applications, and Computation presents a variety of methods to solve linear ordinary differential equations (ODEs) and partial differential equations (PDEs). The text provides a sufficient theoretical basis to understand Green’s function method, which is used to solve initial and boundary value problems involving linear ODEs and PDEs. It also contains a large number of examples and exercises from diverse areas of mathematics, applied science, and engineering. Taking a direct approach, the book first unravels the mystery of the Dirac delta function and then explains its relationship to Green’s functions. The remainder of the text explores the development of Green’s functions and their use in solving linear ODEs and PDEs. The author discusses how to apply various approaches to solve initial and boundary value problems, including classical and general variations of parameters, Wronskian method, Bernoulli’s separation method, integral transform method, method of images, conformal mapping method, and interpolation method. He also covers applications of Green’s functions, including spherical and surface harmonics. Filled with worked examples and exercises, this robust, self-contained text fully explains the differential equation problems, includes graphical representations where necessary, and provides relevant background material. It is mathematically rigorous yet accessible enough for readers to grasp the beauty and power of the subject.

Green s Functions in the Theory of Ordinary Differential Equations

Green   s Functions in the Theory of Ordinary Differential Equations Author Alberto Cabada
ISBN-10 9781461495062
Release 2013-11-29
Pages 168
Download Link Click Here

This book provides a complete and exhaustive study of the Green’s functions. Professor Cabada first proves the basic properties of Green's functions and discusses the study of nonlinear boundary value problems. Classic methods of lower and upper solutions are explored, with a particular focus on monotone iterative techniques that flow from them. In addition, Cabada proves the existence of positive solutions by constructing operators defined in cones. The book will be of interest to graduate students and researchers interested in the theoretical underpinnings of boundary value problem solutions.

Group Inverses of M Matrices and Their Applications

Group Inverses of M Matrices and Their Applications Author Stephen J. Kirkland
ISBN-10 9781439888599
Release 2012-12-18
Pages 332
Download Link Click Here

Group inverses for singular M-matrices are useful tools not only in matrix analysis, but also in the analysis of stochastic processes, graph theory, electrical networks, and demographic models. Group Inverses of M-Matrices and Their Applications highlights the importance and utility of the group inverses of M-matrices in several application areas. After introducing sample problems associated with Leslie matrices and stochastic matrices, the authors develop the basic algebraic and spectral properties of the group inverse of a general matrix. They then derive formulas for derivatives of matrix functions and apply the formulas to matrices arising in a demographic setting, including the class of Leslie matrices. With a focus on Markov chains, the text shows how the group inverse of an appropriate M-matrix is used in the perturbation analysis of the stationary distribution vector as well as in the derivation of a bound for the asymptotic convergence rate of the underlying Markov chain. It also illustrates how to use the group inverse to compute and analyze the mean first passage matrix for a Markov chain. The final chapters focus on the Laplacian matrix for an undirected graph and compare approaches for computing the group inverse. Collecting diverse results into a single volume, this self-contained book emphasizes the connections between problems arising in Markov chains, Perron eigenvalue analysis, and spectral graph theory. It shows how group inverses offer valuable insight into each of these areas.

An Introduction to Partial Differential Equations with MATLAB Second Edition

An Introduction to Partial Differential Equations with MATLAB  Second Edition Author Matthew P. Coleman
ISBN-10 9781439898475
Release 2016-04-19
Pages 683
Download Link Click Here

An Introduction to Partial Differential Equations with MATLAB®, Second Edition illustrates the usefulness of PDEs through numerous applications and helps students appreciate the beauty of the underlying mathematics. Updated throughout, this second edition of a bestseller shows students how PDEs can model diverse problems, including the flow of heat, the propagation of sound waves, the spread of algae along the ocean’s surface, the fluctuation in the price of a stock option, and the quantum mechanical behavior of a hydrogen atom. Suitable for a two-semester introduction to PDEs and Fourier series for mathematics, physics, and engineering students, the text teaches the equations based on method of solution. It provides both physical and mathematical motivation as much as possible. The author treats problems in one spatial dimension before dealing with those in higher dimensions. He covers PDEs on bounded domains and then on unbounded domains, introducing students to Fourier series early on in the text. Each chapter’s prelude explains what and why material is to be covered and considers the material in a historical setting. The text also contains many exercises, including standard ones and graphical problems using MATLAB. While the book can be used without MATLAB, instructors and students are encouraged to take advantage of MATLAB’s excellent graphics capabilities. The MATLAB code used to generate the tables and figures is available in an appendix and on the author’s website.

Modeling and Control in Vibrational and Structural Dynamics

Modeling and Control in Vibrational and Structural Dynamics Author Peng-Fei Yao
ISBN-10 9781439834558
Release 2011-07-06
Pages 419
Download Link Click Here

Modeling and Control in Vibrational and Structural Dynamics: A Differential Geometric Approach describes the control behavior of mechanical objects, such as wave equations, plates, and shells. It shows how the differential geometric approach is used when the coefficients of partial differential equations (PDEs) are variable in space (waves/plates), when the PDEs themselves are defined on curved surfaces (shells), and when the systems have quasilinear principal parts. To make the book self-contained, the author starts with the necessary background on Riemannian geometry. He then describes differential geometric energy methods that are generalizations of the classical energy methods of the 1980s. He illustrates how a basic computational technique can enable multiplier schemes for controls and provide mathematical models for shells in the form of free coordinates. The author also examines the quasilinearity of models for nonlinear materials, the dependence of controllability/stabilization on variable coefficients and equilibria, and the use of curvature theory to check assumptions. With numerous examples and exercises throughout, this book presents a complete and up-to-date account of many important advances in the modeling and control of vibrational and structural dynamics.

Introduction to the Calculus of Variations and Control with Modern Applications

Introduction to the Calculus of Variations and Control with Modern Applications Author John A. Burns
ISBN-10 9781466571396
Release 2013-08-28
Pages 562
Download Link Click Here

Introduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions and discusses the importance of distinguishing between the necessary and sufficient conditions. In the first part of the text, the author develops the calculus of variations and provides complete proofs of the main results. He explains how the ideas behind the proofs are essential to the development of modern optimization and control theory. Focusing on optimal control problems, the second part shows how optimal control is a natural extension of the classical calculus of variations to more complex problems. By emphasizing the basic ideas and their mathematical development, this book gives you the foundation to use these mathematical tools to then tackle new problems. The text moves from simple to more complex problems, allowing you to see how the fundamental theory can be modified to address more difficult and advanced challenges. This approach helps you understand how to deal with future problems and applications in a realistic work environment.

Ordinary Differential Equations

Ordinary Differential Equations Author Charles Roberts
ISBN-10 9781439819098
Release 2011-06-13
Pages 600
Download Link Click Here

In the traditional curriculum, students rarely study nonlinear differential equations and nonlinear systems due to the difficulty or impossibility of computing explicit solutions manually. Although the theory associated with nonlinear systems is advanced, generating a numerical solution with a computer and interpreting that solution are fairly elementary. Bringing the computer into the classroom, Ordinary Differential Equations: Applications, Models, and Computing emphasizes the use of computer software in teaching differential equations. Providing an even balance between theory, computer solution, and application, the text discusses the theorems and applications of the first-order initial value problem, including learning theory models, population growth models, epidemic models, and chemical reactions. It then examines the theory for n-th order linear differential equations and the Laplace transform and its properties, before addressing several linear differential equations with constant coefficients that arise in physical and electrical systems. The author also presents systems of first-order differential equations as well as linear systems with constant coefficients that arise in physical systems, such as coupled spring-mass systems, pendulum systems, the path of an electron, and mixture problems. The final chapter introduces techniques for determining the behavior of solutions to systems of first-order differential equations without first finding the solutions. Designed to be independent of any particular software package, the book includes a CD-ROM with the software used to generate the solutions and graphs for the examples. The appendices contain complete instructions for running the software. A solutions manual is available for qualifying instructors.

Green s Functions with Applications

Green s Functions with Applications Author Dean G. Duffy
ISBN-10 9781420034790
Release 2001-05-31
Pages 464
Download Link Click Here

Since its introduction in 1828, using Green's functions has become a fundamental mathematical technique for solving boundary value problems. Most treatments, however, focus on its theory and classical applications in physics rather than the practical means of finding Green's functions for applications in engineering and the sciences. Green's Functions with Applications systematically presents the various methods of deriving these useful functions. It leads readers through the process of developing Green's functions for ordinary and partial differential equations. In addition to exploring the classical problems involving the wave, heat, and Helmholtz equations, the book includes special sections on leaky modes, water waves, and absolute/convective instability. The author gives special attention to the numerical evaluation of Green's functions. By illustrating many of the functions in the text and problem sets, he helps readers develop an intuition about the behavior of Green's function in certain problems. He also considers the questions of the computational efficiency and possible methods for accelerating the process. With its wealth of examples and problems drawn from the literature, this book provides a treasure-trove of methods to construct and compute Green's functions. It is the most exhaustive source book of Green's functions yet available and the only one designed specifically for engineering and scientific applications.

Handbook of Linear Partial Differential Equations for Engineers and Scientists Second Edition

Handbook of Linear Partial Differential Equations for Engineers and Scientists  Second Edition Author Andrei D. Polyanin
ISBN-10 9781466581494
Release 2015-12-23
Pages 1609
Download Link Click Here

Includes nearly 4,000 linear partial differential equations (PDEs) with solutions Presents solutions of numerous problems relevant to heat and mass transfer, wave theory, hydrodynamics, aerodynamics, elasticity, acoustics, electrodynamics, diffraction theory, quantum mechanics, chemical engineering sciences, electrical engineering, and other fields Outlines basic methods for solving various problems in science and engineering Contains much more linear equations, problems, and solutions than any other book currently available Provides a database of test problems for numerical and approximate analytical methods for solving linear PDEs and systems of coupled PDEs New to the Second Edition More than 700 pages with 1,500+ new first-, second-, third-, fourth-, and higher-order linear equations with solutions Systems of coupled PDEs with solutions Some analytical methods, including decomposition methods and their applications Symbolic and numerical methods for solving linear PDEs with Maple, Mathematica, and MATLAB® Many new problems, illustrative examples, tables, and figures To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the material in increasing order of complexity.

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics Author Victor A. Galaktionov
ISBN-10 1420011626
Release 2006-11-02
Pages 528
Download Link Click Here

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics is the first book to provide a systematic construction of exact solutions via linear invariant subspaces for nonlinear differential operators. Acting as a guide to nonlinear evolution equations and models from physics and mechanics, the book focuses on the existence of new exact solutions on linear invariant subspaces for nonlinear operators and their crucial new properties. This practical reference deals with various partial differential equations (PDEs) and models that exhibit some common nonlinear invariant features. It begins with classical as well as more recent examples of solutions on invariant subspaces. In the remainder of the book, the authors develop several techniques for constructing exact solutions of various nonlinear PDEs, including reaction-diffusion and gas dynamics models, thin-film and Kuramoto-Sivashinsky equations, nonlinear dispersion (compacton) equations, KdV-type and Harry Dym models, quasilinear magma equations, and Green-Naghdi equations. Using exact solutions, they describe the evolution properties of blow-up or extinction phenomena, finite interface propagation, and the oscillatory, changing sign behavior of weak solutions near interfaces for nonlinear PDEs of various types and orders. The techniques surveyed in Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics serve as a preliminary introduction to the general theory of nonlinear evolution PDEs of different orders and types.

Classical and Modern Numerical Analysis

Classical and Modern Numerical Analysis Author Azmy S. Ackleh
ISBN-10 1420091581
Release 2009-07-20
Pages 628
Download Link Click Here

Classical and Modern Numerical Analysis: Theory, Methods and Practice provides a sound foundation in numerical analysis for more specialized topics, such as finite element theory, advanced numerical linear algebra, and optimization. It prepares graduate students for taking doctoral examinations in numerical analysis. The text covers the main areas of introductory numerical analysis, including the solution of nonlinear equations, numerical linear algebra, ordinary differential equations, approximation theory, numerical integration, and boundary value problems. Focusing on interval computing in numerical analysis, it explains interval arithmetic, interval computation, and interval algorithms. The authors illustrate the concepts with many examples as well as analytical and computational exercises at the end of each chapter. This advanced, graduate-level introduction to the theory and methods of numerical analysis supplies the necessary background in numerical methods so that students can apply the techniques and understand the mathematical literature in this area. Although the book is independent of a specific computer program, MATLAB® code is available on the authors' website to illustrate various concepts.

Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications

Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications Author Victor A. Galaktionov
ISBN-10 0203998065
Release 2004-05-24
Pages 384
Download Link Click Here

Unlike the classical Sturm theorems on the zeros of solutions of second-order ODEs, Sturm's evolution zero set analysis for parabolic PDEs did not attract much attention in the 19th century, and, in fact, it was lost or forgotten for almost a century. Briefly revived by Pólya in the 1930's and rediscovered in part several times since, it was not until the 1980's that the Sturmian argument for PDEs began to penetrate into the theory of parabolic equations and was found to have several fundamental applications. Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications focuses on geometric aspects of the intersection comparison for nonlinear models creating finite-time singularities. After introducing the original Sturm zero set results for linear parabolic equations and the basic concepts of geometric analysis, the author presents the main concepts and regularity results of the geometric intersection theory (G-theory). Here he considers the general singular equation and presents the geometric notions related to the regularity and interface propagation of solutions. In the general setting, the author describes the main aspects of the ODE-PDE duality, proves existence and nonexistence theorems, establishes uniqueness and optimal Bernstein-type estimates, and derives interface equations, including higher-order equations. The final two chapters explore some special aspects of discontinuous and continuous limit semigroups generated by singular parabolic equations. Much of the information presented here has never before been published in book form. Readable and self-contained, this book forms a unique and outstanding reference on second-order parabolic PDEs used as models for a wide range of physical problems.

Glimpses of Soliton Theory

Glimpses of Soliton Theory Author Alex Kasman
ISBN-10 9780821852453
Release 2010
Pages 304
Download Link Click Here

Solitons are explicit solutions to nonlinear partial differential equations exhibiting particle-like behavior. This is quite surprising, both mathematically and physically. Waves with these properties were once believed to be impossible by leading mathematical physicists, yet they are now not only accepted as a theoretical possibility but are regularly observed in nature and form the basis of modern fiber-optic communication networks. Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra as prerequisites, this book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstrass -functions, the algebra of differential operators, Lax Pairs and their use in discovering other soliton equations, wedge products and decomposability, the KP Equation and Sato's theory relating the Bilinear KP Equation to the geometry of Grassmannians. Notable features of the book include: careful selection of topics and detailed explanations to make this advanced subject accessible to any undergraduate math major, numerous worked examples and thought-provoking but not overly-difficult exercises, footnotes and lists of suggested readings to guide the interested reader to more information, and use of the software package Mathematica« to facilitate computation and to animate the solutions under study. This book provides the reader with a unique glimpse of the unity of mathematics and could form the basis for a self-study, one-semester special topics, or "capstone" course.

Fourier Series in Several Variables with Applications to Partial Differential Equations

Fourier Series in Several Variables with Applications to Partial Differential Equations Author Victor Shapiro
ISBN-10 9781439854280
Release 2011-03-28
Pages 352
Download Link Click Here

Fourier Series in Several Variables with Applications to Partial Differential Equations illustrates the value of Fourier series methods in solving difficult nonlinear partial differential equations (PDEs). Using these methods, the author presents results for stationary Navier-Stokes equations, nonlinear reaction-diffusion systems, and quasilinear elliptic PDEs and resonance theory. He also establishes the connection between multiple Fourier series and number theory. The book first presents four summability methods used in studying multiple Fourier series: iterated Fejer, Bochner-Riesz, Abel, and Gauss-Weierstrass. It then covers conjugate multiple Fourier series, the analogue of Cantor’s uniqueness theorem in two dimensions, surface spherical harmonics, and Schoenberg’s theorem. After describing five theorems on periodic solutions of nonlinear PDEs, the text concludes with solutions of stationary Navier-Stokes equations. Discussing many results and studies from the literature, this book demonstrates the robust power of Fourier analysis in solving seemingly impenetrable nonlinear problems.

Nonlinear Partial Differential Equations for Scientists and Engineers

Nonlinear Partial Differential Equations for Scientists and Engineers Author Lokenath Debnath
ISBN-10 0817682651
Release 2011-10-07
Pages 860
Download Link Click Here

The revised and enlarged third edition of this successful book presents a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied and updated applications. In an effort to make the book more useful for a diverse readership, updated modern examples of applications are chosen from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. Nonlinear Partial Differential Equations for Scientists and Engineers, Third Edition, improves on an already highly complete and accessible resource for graduate students and professionals in mathematics, physics, science, and engineering. It may be used to great effect as a course textbook, research reference, or self-study guide.

Perry s Chemical Engineers Handbook

Perry s Chemical Engineers  Handbook Author Robert H. Perry
ISBN-10 UOM:49015003045078
Release 1997
Pages 400
Download Link Click Here

Reference work for chemical and process engineers. Newest developments, advances, achievements and methods in various fields.

Differential Equations with Maxima

Differential Equations with Maxima Author Drumi D. Bainov
ISBN-10 9781439867587
Release 2011-04-28
Pages 312
Download Link Click Here

Differential equations with "maxima"—differential equations that contain the maximum of the unknown function over a previous interval—adequately model real-world processes whose present state significantly depends on the maximum value of the state on a past time interval. More and more, these equations model and regulate the behavior of various technical systems on which our ever-advancing, high-tech world depends. Understanding and manipulating the theoretical results and investigations of differential equations with maxima opens the door to enormous possibilities for applications to real-world processes and phenomena. Presenting the qualitative theory and approximate methods, Differential Equations with Maxima begins with an introduction to the mathematical apparatus of integral inequalities involving maxima of unknown functions. The authors solve various types of linear and nonlinear integral inequalities, study both cases of single and double integral inequalities, and illustrate several direct applications of solved inequalities. They also present general properties of solutions as well as existence results for initial value and boundary value problems. Later chapters offer stability results with definitions of different types of stability with sufficient conditions and include investigations based on appropriate modifications of the Razumikhin technique by applying Lyapunov functions. The text covers the main concepts of oscillation theory and methods applied to initial and boundary value problems, combining the method of lower and upper solutions with appropriate monotone methods and introducing algorithms for constructing sequences of successive approximations. The book concludes with a systematic development of the averaging method for differential equations with maxima as applied to first-order and neutral equations. It also explores different schemes for averaging, partial averaging, partially additive averaging, and partially multiplicative averaging. A solid overview of the field, this book guides theoretical and applied researchers in mathematics toward further investigations and applications of these equations for a more accurate study of real-world problems.