Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

 Guesstimation 2.0 reveals the simple and effective techniques needed to estimate virtually anything--quickly--and illustrates them using an eclectic array of problems. A stimulating follow-up to Guesstimation, this is the must-have book for anyone preparing for a job interview in technology or finance, where more and more leading businesses test applicants using estimation questions just like these. The ability to guesstimate on your feet is an essential skill to have in today's world, whether you're trying to distinguish between a billion-dollar subsidy and a trillion-dollar stimulus, a megawatt wind turbine and a gigawatt nuclear plant, or parts-per-million and parts-per-billion contaminants. Lawrence Weinstein begins with a concise tutorial on how to solve these kinds of order of magnitude problems, and then invites readers to have a go themselves. The book features dozens of problems along with helpful hints and easy-to-understand solutions. It also includes appendixes containing useful formulas and more. Guesstimation 2.0 shows how to estimate everything from how closely you can orbit a neutron star without being pulled apart by gravity, to the fuel used to transport your food from the farm to the store, to the total length of all toilet paper used in the United States. It also enables readers to answer, once and for all, the most asked environmental question of our day: paper or plastic?

 Guesstimation is a book that unlocks the power of approximation--it's popular mathematics rounded to the nearest power of ten! The ability to estimate is an important skill in daily life. More and more leading businesses today use estimation questions in interviews to test applicants' abilities to think on their feet. Guesstimation enables anyone with basic math and science skills to estimate virtually anything--quickly--using plausible assumptions and elementary arithmetic. Lawrence Weinstein and John Adam present an eclectic array of estimation problems that range from devilishly simple to quite sophisticated and from serious real-world concerns to downright silly ones. How long would it take a running faucet to fill the inverted dome of the Capitol? What is the total length of all the pickles consumed in the US in one year? What are the relative merits of internal-combustion and electric cars, of coal and nuclear energy? The problems are marvelously diverse, yet the skills to solve them are the same. The authors show how easy it is to derive useful ballpark estimates by breaking complex problems into simpler, more manageable ones--and how there can be many paths to the right answer. The book is written in a question-and-answer format with lots of hints along the way. It includes a handy appendix summarizing the few formulas and basic science concepts needed, and its small size and French-fold design make it conveniently portable. Illustrated with humorous pen-and-ink sketches, Guesstimation will delight popular-math enthusiasts and is ideal for the classroom.

 How many licks to the center of a Tootsie Pop? How many people are having sex at this moment? How long would it take a monkey on a typewriter to produce the plays of Shakespeare? For all those questions that keep you up at night, here's the way to answer them. And the beauty of it is that it's all approximate! Using Enrico Fermi's theory of approximation, Santos brings the world of numbers into perspective. For puzzle junkies and trivia fanatics, these 70 word puzzles will show the reader how to take a bit of information, add what they already know, and extrapolate an answer. Santos has done the impossible: make math and the multiple possibilities of numbers fun and informative. Can you really cry a river? Is it possible to dig your way out of jail with just a teaspoon and before your life sentence is up? Taking an academic subject and using it as the prism to view everyday off-the-wall questions as math problems to be solved is a natural step for the lovers of sudoku, cryptograms, word puzzles, and other thought-provoking games.

 Covering such subjects as astronomy, magnetism, optics, sound, heat, mechanics, waves, and electricity, the book provides a rich source of material for teachers and anyone interested in the physics of everyday life.

 In problem solving, as in street fighting, rules are for fools: do whatever works -- don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge -- from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool -- the general principle -- from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.

 Examines how mathematician and philosopher George Boole and electrical engineer Claude Shannon became the fathers of the information age by advancing Boolean logic, and looks at the influence of other factors, including the Turing machine.

 How heavy is that cloud? Why can you see farther in rain than in fog? Why are the droplets on that spider web spaced apart so evenly? If you have ever asked questions like these while outdoors, and wondered how you might figure out the answers, this is a book for you. An entertaining and informative collection of fascinating puzzles from the natural world around us, A Mathematical Nature Walk will delight anyone who loves nature or math or both. John Adam presents ninety-six questions about many common natural phenomena--and a few uncommon ones--and then shows how to answer them using mostly basic mathematics. Can you weigh a pumpkin just by carefully looking at it? Why can you see farther in rain than in fog? What causes the variations in the colors of butterfly wings, bird feathers, and oil slicks? And why are large haystacks prone to spontaneous combustion? These are just a few of the questions you'll find inside. Many of the problems are illustrated with photos and drawings, and the book also has answers, a glossary of terms, and a list of some of the patterns found in nature. About a quarter of the questions can be answered with arithmetic, and many of the rest require only precalculus. But regardless of math background, readers will learn from the informal descriptions of the problems and gain a new appreciation of the beauty of nature and the mathematics that lies behind it.

 Engrossing journey through the workings of the universe and minds of today’s scientific thinkers examines an extraordinary range of topics—from the Superconducting Super Collider and the mysteries of the Big Bang, to strange crystals with impossible structures and the quest for the temperature of absolute zero. A richly satisfying work teeming with the drama of scientific research and the thrill of discovery will appeal to scientists and laypeople alike.

 In this book, Sanjoy Mahajan shows us that the way to master complexity is through insight rather than precision. Precision can overwhelm us with information, whereas insight connects seemingly disparate pieces of information into a simple picture. Unlike computers, humans depend on insight. Based on the author's fifteen years of teaching at MIT, Cambridge University, and Olin College, The Art of Insight in Science and Engineering shows us how to build insight and find understanding, giving readers tools to help them solve any problem in science and engineering.To master complexity, we can organize it or discard it. The Art of Insight in Science and Engineering first teaches the tools for organizing complexity, then distinguishes the two paths for discarding complexity: with and without loss of information. Questions and problems throughout the text help readers master and apply these groups of tools. Armed with this three-part toolchest, and without complicated mathematics, readers can estimate the flight range of birds and planes and the strength of chemical bonds, understand the physics of pianos and xylophones, and explain why skies are blue and sunsets are red.The Art of Insight in Science and Engineering will appear in print and online under a Creative Commons Noncommercial Share Alike license.

 Guesstimation 2.0 reveals the simple and effective techniques needed to estimate virtually anything--quickly--and illustrates them using an eclectic array of problems. A stimulating follow-up to Guesstimation, this is the must-have book for anyone preparing for a job interview in technology or finance, where more and more leading businesses test applicants using estimation questions just like these. The ability to guesstimate on your feet is an essential skill to have in today's world, whether you're trying to distinguish between a billion-dollar subsidy and a trillion-dollar stimulus, a megawatt wind turbine and a gigawatt nuclear plant, or parts-per-million and parts-per-billion contaminants. Lawrence Weinstein begins with a concise tutorial on how to solve these kinds of order of magnitude problems, and then invites readers to have a go themselves. The book features dozens of problems along with helpful hints and easy-to-understand solutions. It also includes appendixes containing useful formulas and more. Guesstimation 2.0 shows how to estimate everything from how closely you can orbit a neutron star without being pulled apart by gravity, to the fuel used to transport your food from the farm to the store, to the total length of all toilet paper used in the United States. It also enables readers to answer, once and for all, the most asked environmental question of our day: paper or plastic?

 Mathematical modelling is a subject without boundaries. It is the means by which mathematics becomes useful to virtually any subject. Moreover, modelling has been and continues to be a driving force for the development of mathematics itself. This book explains the process of modelling real situations to obtain mathematical problems that can be analyzed, thus solving the original problem. The presentation is in the form of case studies, which are developed much as they would be in true applications. In many cases, an initial model is created, then modified along the way. Some cases are familiar, such as the evaluation of an annuity. Others are unique, such as the fascinating situation in which an engineer, armed only with a slide rule, had 24 hours to compute whether a valve would hold when a temporary rock plug was removed from a water tunnel. Each chapter ends with a set of exercises and some suggestions for class projects.Some projects are extensive, as with the explorations of the predator-prey model; others are more modest. The text was designed to be suitable for a one-term course for advanced undergraduates. The selection of topics and the style of exposition reflect this choice. The authors have also succeeded in demonstrating just how enjoyable the subject can be. This is an ideal text for classes on modelling. It can also be used in seminars or as preparation for mathematical modelling competitions.

 With Brainteaser Physics, students and veteran physicists alike can sharpen their critical and creative thinking—and have fun at the same time.

 This unusual, but very useful, "how-not-to" book is available in a second edition which eliminates most involuntary mistakes.

 Now updated with new measurement methods and new examples, How to Measure Anything shows managers how to inform themselves in order to make less risky, more profitable business decisions This insightful and eloquent book will show you how to measure those things in your own business, government agency or other organization that, until now, you may have considered "immeasurable," including customer satisfaction, organizational flexibility, technology risk, and technology ROI. Adds new measurement methods, showing how they can be applied to a variety of areas such as risk management and customer satisfaction Simplifies overall content while still making the more technical applications available to those readers who want to dig deeper Continues to boldly assert that any perception of "immeasurability" is based on certain popular misconceptions about measurement and measurement methods Shows the common reasoning for calling something immeasurable, and sets out to correct those ideas Offers practical methods for measuring a variety of "intangibles" Provides an online database (www.howtomeasureanything.com) of downloadable, practical examples worked out in detailed spreadsheets Written by recognized expert Douglas Hubbard—creator of Applied Information Economics—How to Measure Anything, Third Edition illustrates how the author has used his approach across various industries and how any problem, no matter how difficult, ill defined, or uncertain can lend itself to measurement using proven methods.