Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Handbook of Combinatorial Designs Second Edition

Handbook of Combinatorial Designs  Second Edition Author Charles J. Colbourn
ISBN-10 143983234X
Release 2010-12-12
Pages 1016
Download Link Click Here

Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence results. Over 30% longer than the first edition, the book builds upon the groundwork of its predecessor while retaining the original contributors' expertise. The first part contains a brief introduction and history of the subject. The following parts focus on four main classes of combinatorial designs: balanced incomplete block designs, orthogonal arrays and Latin squares, pairwise balanced designs, and Hadamard and orthogonal designs. Closely connected to the preceding sections, the next part surveys 65 additional classes of designs, such as balanced ternary, factorial, graphical, Howell, quasi-symmetric, and spherical. The final part presents mathematical and computational background related to design theory. New to the Second Edition An introductory part that provides a general overview and a historical perspective of the area New chapters on the history of design theory, various codes, bent functions, and numerous types of designs Fully updated tables, including BIBDs, MOLS, PBDs, and Hadamard matrices Nearly 2,200 references in a single bibliographic section Meeting the need for up-to-date and accessible tabular and reference information, this handbook provides the tools to understand combinatorial design theory and applications that span the entire discipline. The author maintains a website with more information.



Handbook of Combinatorial Designs

Handbook of Combinatorial Designs Author C. J. Colbourn
ISBN-10 1584885068
Release 2006-11-02
Pages 1016
Download Link Click Here

Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence results. Over 30% longer than the first edition, the book builds upon the groundwork of its predecessor while retaining the original contributors' expertise. The first part contains a brief introduction and history of the subject. The following parts focus on four main classes of combinatorial designs: balanced incomplete block designs, orthogonal arrays and Latin squares, pairwise balanced designs, and Hadamard and orthogonal designs. Closely connected to the preceding sections, the next part surveys 65 additional classes of designs, such as balanced ternary, factorial, graphical, Howell, quasi-symmetric, and spherical. The final part presents mathematical and computational background related to design theory. New to the Second Edition An introductory part that provides a general overview and a historical perspective of the area New chapters on the history of design theory, various codes, bent functions, and numerous types of designs Fully updated tables, including BIBDs, MOLS, PBDs, and Hadamard matrices Nearly 2,200 references in a single bibliographic section Meeting the need for up-to-date and accessible tabular and reference information, this handbook provides the tools to understand combinatorial design theory and applications that span the entire discipline. The author maintains a website with more information.



Handbook of Discrete and Combinatorial Mathematics

Handbook of Discrete and Combinatorial Mathematics Author Kenneth H. Rosen
ISBN-10 9781351644051
Release 2017-10-19
Pages 1612
Download Link Click Here

Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.



How to Count

How to Count Author R.B.J.T. Allenby
ISBN-10 9781420082616
Release 2011-07-01
Pages 444
Download Link Click Here

Emphasizes a Problem Solving Approach A first course in combinatorics Completely revised, How to Count: An Introduction to Combinatorics, Second Edition shows how to solve numerous classic and other interesting combinatorial problems. The authors take an easily accessible approach that introduces problems before leading into the theory involved. Although the authors present most of the topics through concrete problems, they also emphasize the importance of proofs in mathematics. New to the Second Edition This second edition incorporates 50 percent more material. It includes seven new chapters that cover occupancy problems, Stirling and Catalan numbers, graph theory, trees, Dirichlet’s pigeonhole principle, Ramsey theory, and rook polynomials. This edition also contains more than 450 exercises. Ideal for both classroom teaching and self-study, this text requires only a modest amount of mathematical background. In an engaging way, it covers many combinatorial tools, such as the inclusion-exclusion principle, generating functions, recurrence relations, and Pólya’s counting theorem.



Introduction to Combinatorial Designs Second Edition

Introduction to Combinatorial Designs  Second Edition Author W.D. Wallis
ISBN-10 1584888385
Release 2007-05-17
Pages 328
Download Link Click Here

Combinatorial theory is one of the fastest growing areas of modern mathematics. Focusing on a major part of this subject, Introduction to Combinatorial Designs, Second Edition provides a solid foundation in the classical areas of design theory as well as in more contemporary designs based on applications in a variety of fields. After an overview of basic concepts, the text introduces balanced designs and finite geometries. The author then delves into balanced incomplete block designs, covering difference methods, residual and derived designs, and resolvability. Following a chapter on the existence theorem of Bruck, Ryser, and Chowla, the book discusses Latin squares, one-factorizations, triple systems, Hadamard matrices, and Room squares. It concludes with a number of statistical applications of designs. Reflecting recent results in design theory and outlining several applications, this new edition of a standard text presents a comprehensive look at the combinatorial theory of experimental design. Suitable for a one-semester course or for self-study, it will prepare readers for further exploration in the field. To access supplemental materials for this volume, visit the author’s website at http://www.math.siu.edu/Wallis/designs



Handbook of Discrete and Computational Geometry Third Edition

Handbook of Discrete and Computational Geometry  Third Edition Author Csaba D. Toth
ISBN-10 9781351645911
Release 2017-11-22
Pages 1928
Download Link Click Here

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in ?elds as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed signi?cantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young ?eld of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.



Discrete Mathematics with Proof

Discrete Mathematics with Proof Author Eric Gossett
ISBN-10 9780470457931
Release 2009-06-22
Pages 904
Download Link Click Here

"Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. - Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. - It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics."--Jacket.



Combinatorial Algorithms

Combinatorial Algorithms Author Donald L. Kreher
ISBN-10 084933988X
Release 1998-12-18
Pages 344
Download Link Click Here

This textbook thoroughly outlines combinatorial algorithms for generation, enumeration, and search. Topics include backtracking and heuristic search methods applied to various combinatorial structures, such as: Combinations Permutations Graphs Designs Many classical areas are covered as well as new research topics not included in most existing texts, such as: Group algorithms Graph isomorphism Hill-climbing Heuristic search algorithms This work serves as an exceptional textbook for a modern course in combinatorial algorithms, providing a unified and focused collection of recent topics of interest in the area. The authors, synthesizing material that can only be found scattered through many different sources, introduce the most important combinatorial algorithmic techniques - thus creating an accessible, comprehensive text that students of mathematics, electrical engineering, and computer science can understand without needing a prior course on combinatorics.



Elliptic Curves

Elliptic Curves Author Lawrence C. Washington
ISBN-10 1420071475
Release 2008-04-03
Pages 536
Download Link Click Here

Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and applications of elliptic curves. New to the Second Edition Chapters on isogenies and hyperelliptic curves A discussion of alternative coordinate systems, such as projective, Jacobian, and Edwards coordinates, along with related computational issues A more complete treatment of the Weil and Tate–Lichtenbaum pairings Doud’s analytic method for computing torsion on elliptic curves over Q An explanation of how to perform calculations with elliptic curves in several popular computer algebra systems Taking a basic approach to elliptic curves, this accessible book prepares readers to tackle more advanced problems in the field. It introduces elliptic curves over finite fields early in the text, before moving on to interesting applications, such as cryptography, factoring, and primality testing. The book also discusses the use of elliptic curves in Fermat’s Last Theorem. Relevant abstract algebra material on group theory and fields can be found in the appendices.



Introduction to Combinatorics

Introduction to Combinatorics Author Martin J. Erickson
ISBN-10 9781118030899
Release 2011-10-24
Pages 208
Download Link Click Here

Introduction to Combinatorics has been writing in one form or another for most of life. You can find so many inspiration from Introduction to Combinatorics also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Introduction to Combinatorics book for free.



Graphs Algorithms and Optimization

Graphs  Algorithms  and Optimization Author William Kocay
ISBN-10 9781351989121
Release 2017-09-20
Pages 504
Download Link Click Here

Graph theory offers a rich source of problems and techniques for programming and data structure development, as well as for understanding computing theory, including NP-Completeness and polynomial reduction. A comprehensive text, Graphs, Algorithms, and Optimization features clear exposition on modern algorithmic graph theory presented in a rigorous yet approachable way. The book covers major areas of graph theory including discrete optimization and its connection to graph algorithms. The authors explore surface topology from an intuitive point of view and include detailed discussions on linear programming that emphasize graph theory problems useful in mathematics and computer science. Many algorithms are provided along with the data structure needed to program the algorithms efficiently. The book also provides coverage on algorithm complexity and efficiency, NP-completeness, linear optimization, and linear programming and its relationship to graph algorithms. Written in an accessible and informal style, this work covers nearly all areas of graph theory. Graphs, Algorithms, and Optimization provides a modern discussion of graph theory applicable to mathematics, computer science, and crossover applications.



Handbook of Graph Theory

Handbook of Graph Theory Author Jonathan L. Gross
ISBN-10 0203490207
Release 2004-06-02
Pages 1192
Download Link Click Here

The Handbook of Graph Theory is the most comprehensive single-source guide to graph theory ever published. Best-selling authors Jonathan Gross and Jay Yellen assembled an outstanding team of experts to contribute overviews of more than 50 of the most significant topics in graph theory-including those related to algorithmic and optimization approaches as well as "pure" graph theory. They then carefully edited the compilation to produce a unified, authoritative work ideal for ready reference. Designed and edited with non-experts in mind, the Handbook of Graph Theory makes information easy to find and easy to understand. The treatment of each topic includes lists of essential definitions and facts accompanied by examples, tables, remarks, and in some areas, conjectures and open problems. Each section contains a glossary of terms relevant to that topic and an extensive bibliography of references that collectively form an extensive guide to the primary research literature. The applications of graph theory are fast becoming ubiquitous. Whether your primary area of interest lies in mathematics, computer science, engineering, or operations research, this handbook holds the key to unlocking graph theory's intricacies, applications, and potential.



Handbook of Applied Cryptography

Handbook of Applied Cryptography Author Alfred J. Menezes
ISBN-10 9781439821916
Release 1996-10-16
Pages 810
Download Link Click Here

Cryptography, in particular public-key cryptography, has emerged in the last 20 years as an important discipline that is not only the subject of an enormous amount of research, but provides the foundation for information security in many applications. Standards are emerging to meet the demands for cryptographic protection in most areas of data communications. Public-key cryptographic techniques are now in widespread use, especially in the financial services industry, in the public sector, and by individuals for their personal privacy, such as in electronic mail. This Handbook will serve as a valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography. It is a necessary and timely guide for professionals who practice the art of cryptography. The Handbook of Applied Cryptography provides a treatment that is multifunctional: It serves as an introduction to the more practical aspects of both conventional and public-key cryptography It is a valuable source of the latest techniques and algorithms for the serious practitioner It provides an integrated treatment of the field, while still presenting each major topic as a self-contained unit It provides a mathematical treatment to accompany practical discussions It contains enough abstraction to be a valuable reference for theoreticians while containing enough detail to actually allow implementation of the algorithms discussed Now in its third printing, this is the definitive cryptography reference that the novice as well as experienced developers, designers, researchers, engineers, computer scientists, and mathematicians alike will use.



A Course in Combinatorics

A Course in Combinatorics Author J. H. van Lint
ISBN-10 9781139430630
Release 2001-11-22
Pages
Download Link Click Here

This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.



Graph Theory and Its Applications Second Edition

Graph Theory and Its Applications  Second Edition Author Jonathan L. Gross
ISBN-10 9781420057140
Release 2005-09-22
Pages 800
Download Link Click Here

Already an international bestseller, with the release of this greatly enhanced second edition, Graph Theory and Its Applications is now an even better choice as a textbook for a variety of courses -- a textbook that will continue to serve your students as a reference for years to come. The superior explanations, broad coverage, and abundance of illustrations and exercises that positioned this as the premier graph theory text remain, but are now augmented by a broad range of improvements. Nearly 200 pages have been added for this edition, including nine new sections and hundreds of new exercises, mostly non-routine. What else is new? New chapters on measurement and analytic graph theory Supplementary exercises in each chapter - ideal for reinforcing, reviewing, and testing. Solutions and hints, often illustrated with figures, to selected exercises - nearly 50 pages worth Reorganization and extensive revisions in more than half of the existing chapters for smoother flow of the exposition Foreshadowing - the first three chapters now preview a number of concepts, mostly via the exercises, to pique the interest of reader Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.



Handbook of Graph Theory Second Edition

Handbook of Graph Theory  Second Edition Author Jonathan L. Gross
ISBN-10 9781498761369
Release 2015-09-15
Pages 1630
Download Link Click Here

In the ten years since the publication of the best-selling first edition, more than 1,000 graph theory papers have been published each year. Reflecting these advances, Handbook of Graph Theory, Second Edition provides comprehensive coverage of the main topics in pure and applied graph theory. This second edition—over 400 pages longer than its predecessor—incorporates 14 new sections. Each chapter includes lists of essential definitions and facts, accompanied by examples, tables, remarks, and, in some cases, conjectures and open problems. A bibliography at the end of each chapter provides an extensive guide to the research literature and pointers to monographs. In addition, a glossary is included in each chapter as well as at the end of each section. This edition also contains notes regarding terminology and notation. With 34 new contributors, this handbook is the most comprehensive single-source guide to graph theory. It emphasizes quick accessibility to topics for non-experts and enables easy cross-referencing among chapters.



Discrete Mathematics and Its Applications

Discrete Mathematics and Its Applications Author Kenneth Rosen
ISBN-10 9780077418939
Release 1995
Pages
Download Link Click Here

Discrete Mathematics and Its Applications has been writing in one form or another for most of life. You can find so many inspiration from Discrete Mathematics and Its Applications also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Discrete Mathematics and Its Applications book for free.