Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Introduction to Analytical Dynamics

Introduction to Analytical Dynamics Author Nicholas Woodhouse
ISBN-10 1848828160
Release 2009-12-17
Pages 240
Download Link Click Here

First published in 1987, this text offers concise but clear explanations and derivations to give readers a confident grasp of the chain of argument that leads from Newton’s laws through Lagrange’s equations and Hamilton’s principle, to Hamilton’s equations and canonical transformations. This new edition has been extensively revised and updated to include: A chapter on symplectic geometry and the geometric interpretation of some of the coordinate calculations. A more systematic treatment of the conections with the phase-plane analysis of ODEs; and an improved treatment of Euler angles. A greater emphasis on the links to special relativity and quantum theory showing how ideas from this classical subject link into contemporary areas of mathematics and theoretical physics. A wealth of examples show the subject in action and a range of exercises – with solutions – are provided to help test understanding.



Advanced Mechanics and General Relativity

Advanced Mechanics and General Relativity Author Joel Franklin
ISBN-10 9781139489027
Release 2010-07-08
Pages
Download Link Click Here

Aimed at advanced undergraduates with background knowledge of classical mechanics and electricity and magnetism, this textbook presents both the particle dynamics relevant to general relativity, and the field dynamics necessary to understand the theory. Focusing on action extremization, the book develops the structure and predictions of general relativity by analogy with familiar physical systems. Topics ranging from classical field theory to minimal surfaces and relativistic strings are covered in a homogeneous manner. Nearly 150 exercises and numerous examples throughout the textbook enable students to test their understanding of the material covered. A tensor manipulation package to help students overcome the computational challenge associated with general relativity is available on a site hosted by the author. A link to this and to a solutions manual can be found at www.cambridge.org/9780521762458.



Complex Analysis

Complex Analysis Author Howie
ISBN-10 8181282965
Release 2005-01-01
Pages 272
Download Link Click Here

Complex Analysis has been writing in one form or another for most of life. You can find so many inspiration from Complex Analysis also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Complex Analysis book for free.



Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations Author David F. Griffiths
ISBN-10 0857291483
Release 2010-11-11
Pages 271
Download Link Click Here

Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com



Essential Mathematical Biology

Essential Mathematical Biology Author Nicholas F. Britton
ISBN-10 9781447100492
Release 2012-12-06
Pages 335
Download Link Click Here

This self-contained introduction to the fast-growing field of Mathematical Biology is written for students with a mathematical background. It sets the subject in a historical context and guides the reader towards questions of current research interest. A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling. Particular attention is paid to situations where the simple assumptions of homogenity made in early models break down and the process of mathematical modelling is seen in action.



Basic Stochastic Processes

Basic Stochastic Processes Author Zdzislaw Brzezniak
ISBN-10 9781447105336
Release 2012-12-06
Pages 226
Download Link Click Here

Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.



Game Theory

Game Theory Author James N. Webb
ISBN-10 1846286360
Release 2007-03-06
Pages 242
Download Link Click Here

The outstanding feature of this book is that it provides a unified account of three types of decision problem. It covers the basic ideas of decision theory, classical game theory, and evolutionary game theory in one volume. No background knowledge of economics or biology is required as examples have been carefully selected for their accessibility. Detailed solutions to the numerous exercises are provided at the back of the book, making it ideal for self-study. This introduction to game theory is intended as a first course for undergraduate students of mathematics, but it will also interest advanced students or researchers in biology and economics.



Complex Analysis

Complex Analysis Author John M. Howie
ISBN-10 9781447100270
Release 2012-12-06
Pages 260
Download Link Click Here

Complex analysis can be a difficult subject and many introductory texts are just too ambitious for today’s students. This book takes a lower starting point than is traditional and concentrates on explaining the key ideas through worked examples and informal explanations, rather than through "dry" theory.



Essential Real Analysis

Essential Real Analysis Author Michael Field
ISBN-10 9783319675466
Release 2017-11-06
Pages 450
Download Link Click Here

This book provides a rigorous introduction to the techniques and results of real analysis, metric spaces and multivariate differentiation, suitable for undergraduate courses. Starting from the very foundations of analysis, it offers a complete first course in real analysis, including topics rarely found in such detail in an undergraduate textbook such as the construction of non-analytic smooth functions, applications of the Euler-Maclaurin formula to estimates, and fractal geometry. Drawing on the author’s extensive teaching and research experience, the exposition is guided by carefully chosen examples and counter-examples, with the emphasis placed on the key ideas underlying the theory. Much of the content is informed by its applicability: Fourier analysis is developed to the point where it can be rigorously applied to partial differential equations or computation, and the theory of metric spaces includes applications to ordinary differential equations and fractals. Essential Real Analysis will appeal to students in pure and applied mathematics, as well as scientists looking to acquire a firm footing in mathematical analysis. Numerous exercises of varying difficulty, including some suitable for group work or class discussion, make this book suitable for self-study as well as lecture courses.



Symmetry in Mechanics

Symmetry in Mechanics Author Stephanie Frank Singer
ISBN-10 9781461201892
Release 2012-12-06
Pages 193
Download Link Click Here

"And what is the use," thought Alice, "of a book without pictures or conversations in it?" -Lewis Carroll This book is written for modem undergraduate students - not the ideal stu dents that mathematics professors wish for (and who occasionally grace our campuses), but the students like many the author has taught: talented but ap preciating review and reinforcement of past course work; willing to work hard, but demanding context and motivation for the mathematics they are learning. To suit this audience, the author eschews density of topics and efficiency of presentation in favor of a gentler tone, a coherent story, digressions on mathe maticians, physicists and their notations, simple examples worked out in detail, and reinforcement of the basics. Dense and efficient texts play a crucial role in the education of budding (and budded) mathematicians and physicists. This book does not presume to improve on the classics in that genre. Rather, it aims to provide those classics with a large new generation of appreciative readers. This text introduces some basic constructs of modern symplectic geometry in the context of an old celestial mechanics problem, the two-body problem. We present the derivation of Kepler's laws of planetary motion from Newton's laws of gravitation, first in the style of an undergraduate physics course, and x Preface then again in the language of symplectic geometry. No previous exposure to symplectic geometry is required: we introduce and illustrate all necessary con structs.



Mathematical Modeling

Mathematical Modeling Author Christof Eck
ISBN-10 9783319551616
Release 2017-05-09
Pages 509
Download Link Click Here

Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.



Introductory Mathematics Algebra and Analysis

Introductory Mathematics  Algebra and Analysis Author Geoff Smith
ISBN-10 3540761780
Release 1998-01-01
Pages 215
Download Link Click Here

This text provides a lively introduction to pure mathematics. It begins with sets, functions and relations, proof by induction and contradiction, complex numbers, vectors and matrices, and provides a brief introduction to group theory. It moves onto analysis, providing a gentle introduction to epsilon-delta technology and finishes with continuity and functions. The book features numerous exercises of varying difficulty throughout the text.



Theoretical Physics 2

Theoretical Physics 2 Author Wolfgang Nolting
ISBN-10 9783319401294
Release 2016-06-28
Pages 358
Download Link Click Here

This textbook offers a clear and comprehensive introduction to analytical mechanics, one of the core components of undergraduate physics courses. The book starts with a thorough introduction into Lagrangian mechanics, detailing the d’Alembert principle, Hamilton’s principle and conservation laws. It continues with an in-depth explanation of Hamiltonian mechanics, illustrated by canonical and Legendre transformation, the generalization to quantum mechanics through Poisson brackets and all relevant variational principles. Finally, the Hamilton-Jacobi theory and the transition to wave mechanics are presented in detail. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cover the complete core curriculum of theoretical physics at undergraduate level. Each volume is self-contained and provides all the material necessary for the individual course topic. Numerous problems with detailed solutions support a deeper understanding. Wolfgang Nolting is famous for his refined didactical style and has been referred to as the "German Feynman" in reviews.



General Relativity

General Relativity Author N.M.J. Woodhouse
ISBN-10 1846284872
Release 2007-03-06
Pages 220
Download Link Click Here

Based on a course taught for years at Oxford, this book offers a concise exposition of the central ideas of general relativity. The focus is on the chain of reasoning that leads to the relativistic theory from the analysis of distance and time measurements in the presence of gravity, rather than on the underlying mathematical structure. Includes links to recent developments, including theoretical work and observational evidence, to encourage further study.



Vector Calculus

Vector Calculus Author Paul C. Matthews
ISBN-10 9781447105978
Release 2012-12-06
Pages 182
Download Link Click Here

Vector calculus is the fundamental language of mathematical physics. It pro vides a way to describe physical quantities in three-dimensional space and the way in which these quantities vary. Many topics in the physical sciences can be analysed mathematically using the techniques of vector calculus. These top ics include fluid dynamics, solid mechanics and electromagnetism, all of which involve a description of vector and scalar quantities in three dimensions. This book assumes no previous knowledge of vectors. However, it is assumed that the reader has a knowledge of basic calculus, including differentiation, integration and partial differentiation. Some knowledge of linear algebra is also required, particularly the concepts of matrices and determinants. The book is designed to be self-contained, so that it is suitable for a pro gramme of individual study. Each of the eight chapters introduces a new topic, and to facilitate understanding of the material, frequent reference is made to physical applications. The physical nature of the subject is clarified with over sixty diagrams, which provide an important aid to the comprehension of the new concepts. Following the introduction of each new topic, worked examples are provided. It is essential that these are studied carefully, so that a full un derstanding is developed before moving ahead. Like much of mathematics, each section of the book is built on the foundations laid in the earlier sections and chapters.



Special Relativity

Special Relativity Author N.M.J. Woodhouse
ISBN-10 9781447100836
Release 2012-12-06
Pages 196
Download Link Click Here

This book provides readers with the tools needed to understand the physical basis of special relativity and will enable a confident mathematical understanding of Minkowski's picture of space-time. It features a large number of examples and exercises, ranging from the rather simple through to the more involved and challenging. Coverage includes acceleration and tensors and has an emphasis on space-time diagrams.



Elementary Differential Geometry

Elementary Differential Geometry Author A.N. Pressley
ISBN-10 9781848828919
Release 2010-03-10
Pages 474
Download Link Click Here

Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces suitable for a first course on the subject. Prerequisites are kept to an absolute minimum – nothing beyond first courses in linear algebra and multivariable calculus – and the most direct and straightforward approach is used throughout. New features of this revised and expanded second edition include: a chapter on non-Euclidean geometry, a subject that is of great importance in the history of mathematics and crucial in many modern developments. The main results can be reached easily and quickly by making use of the results and techniques developed earlier in the book. Coverage of topics such as: parallel transport and its applications; map colouring; holonomy and Gaussian curvature. Around 200 additional exercises, and a full solutions manual for instructors, available via www.springer.com ul>