Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Introduction to Calculus and Analysis

Introduction to Calculus and Analysis Author Richard Courant
ISBN-10 3540665692
Release 1999-12-14
Pages 556
Download Link Click Here

Biography of Richard Courant Richard Courant was born in 1888 in a small town of what is now Poland, and died in New Rochelle, N.Y. in 1972. He received his doctorate from the legendary David Hilbert in Göttingen, where later he founded and directed its famed mathematics Institute, a Mecca for mathematicians in the twenties. In 1933 the Nazi government dismissed Courant for being Jewish, and he emigrated to the United States. He found, in New York, what he called "a reservoir of talent" to be tapped. He built, at New York University, a new mathematical Sciences Institute that shares the philosophy of its illustrious predecessor and rivals it in worldwide influence. For Courant mathematics was an adventure, with applications forming a vital part. This spirit is reflected in his books, in particular in his influential calculus text, revised in collaboration with his brilliant younger colleague, Fritz John. (P.D. Lax) Biography of Fritz John Fritz John was born on June 14, 1910, in Berlin. After his school years in Danzig (now Gdansk, Poland), he studied in Göttingen and received his doctorate in 1933, just when the Nazi regime came to power. As he was half-Jewish and his bride Aryan, he had to flee Germany in 1934. After a year in Cambridge, UK, he accepted a position at the University of Kentucky, and in 1946 joined Courant, Friedrichs and Stoker in building up New York University the institute that later became the Courant Institute of Mathematical Sciences. He remained there until his death in New Rochelle on February 10, 1994. John's research and the books he wrote had a strong impact on the development of many fields of mathematics, foremost in partial differential equations. He also worked on Radon transforms, illposed problems, convex geometry, numerical analysis, elasticity theory. In connection with his work in latter field, he and Nirenberg introduced the space of the BMO-functions (bounded mean oscillations). Fritz John's work exemplifies the unity of mathematics as well as its elegance and its beauty. (J. Moser)



Introduction to Calculus and Analysis I

Introduction to Calculus and Analysis I Author Richard Courant
ISBN-10 9783642586040
Release 2012-12-06
Pages 661
Download Link Click Here

From the Preface: (...) The book is addressed to students on various levels, to mathematicians, scientists, engineers. It does not pretend to make the subject easy by glossing over difficulties, but rather tries to help the genuinely interested reader by throwing light on the interconnections and purposes of the whole. Instead of obstructing the access to the wealth of facts by lengthy discussions of a fundamental nature we have sometimes postponed such discussions to appendices in the various chapters. Numerous examples and problems are given at the end of various chapters. Some are challenging, some are even difficult; most of them supplement the material in the text.



Introduction to Calculus and Analysis II 1

Introduction to Calculus and Analysis II 1 Author Richard Courant
ISBN-10 9783642571497
Release 2012-12-06
Pages 556
Download Link Click Here

From the reviews: "...one of the best textbooks introducing several generations of mathematicians to higher mathematics. ... This excellent book is highly recommended both to instructors and students." --Acta Scientiarum Mathematicarum, 1991



Differential and Integral Calculus

Differential and Integral Calculus Author Richard Courant
ISBN-10 9781118031490
Release 2011-08-15
Pages 640
Download Link Click Here

Differential and Integral Calculus has been writing in one form or another for most of life. You can find so many inspiration from Differential and Integral Calculus also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Differential and Integral Calculus book for free.



Methods of Mathematical Physics

Methods of Mathematical Physics Author Richard Courant
ISBN-10 UCLA:L0065806671
Release 1953-01-15
Pages 560
Download Link Click Here

Since the first volume of this work came out in Germany in 1924, this book, together with its second volume, has remained standard in the field. Courant and Hilbert's treatment restores the historically deep connections between physical intuition and mathematical development, providing the reader with a unified approach to mathematical physics. The present volume represents Richard Courant's second and final revision of 1953.



Differential and Integral Calculus

Differential and Integral Calculus Author Richard Courant
ISBN-10 9781118031483
Release 2011-08-15
Pages 694
Download Link Click Here

Differential and Integral Calculus has been writing in one form or another for most of life. You can find so many inspiration from Differential and Integral Calculus also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Differential and Integral Calculus book for free.



Introduction to Calculus and Analysis Volume II 2

Introduction to Calculus and Analysis Volume II 2 Author Richard Courant
ISBN-10 3540665706
Release 1999-12-14
Pages 412
Download Link Click Here

From the reviews: "...one of the best textbooks introducing several generations of mathematicians to higher mathematics. ... This excellent book is highly recommended both to instructors and students." --Acta Scientiarum Mathematicarum, 1991



Fundamentals of Mathematical Analysis

Fundamentals of Mathematical Analysis Author Paul J. Sally, Jr.
ISBN-10 9780821891414
Release 2013
Pages 362
Download Link Click Here

This is a textbook for a course in Honors Analysis (for freshman/sophomore undergraduates) or Real Analysis (for junior/senior undergraduates) or Analysis-I (beginning graduates). It is intended for students who completed a course in ``AP Calculus'', possibly followed by a routine course in multivariable calculus and a computational course in linear algebra. There are three features that distinguish this book from many other books of a similar nature and which are important for the use of this book as a text. The first, and most important, feature is the collection of exercises. These are spread throughout the chapters and should be regarded as an essential component of the student's learning. Some of these exercises comprise a routine follow-up to the material, while others challenge the student's understanding more deeply. The second feature is the set of independent projects presented at the end of each chapter. These projects supplement the content studied in their respective chapters. They can be used to expand the student's knowledge and understanding or as an opportunity to conduct a seminar in Inquiry Based Learning in which the students present the material to their class. The third really important feature is a series of challenge problems that increase in impossibility as the chapters progress.



Calculus With Applications

Calculus With Applications Author Peter D. Lax
ISBN-10 9781461479468
Release 2013-09-21
Pages 503
Download Link Click Here

Burstein, and Lax's Calculus with Applications and Computing offers meaningful explanations of the important theorems of single variable calculus. Written with students in mathematics, the physical sciences, and engineering in mind, and revised with their help, it shows that the themes of calculation, approximation, and modeling are central to mathematics and the main ideas of single variable calculus. This edition brings the innovation of the first edition to a new generation of students. New sections in this book use simple, elementary examples to show that when applying calculus concepts to approximations of functions, uniform convergence is more natural and easier to use than point-wise convergence. As in the original, this edition includes material that is essential for students in science and engineering, including an elementary introduction to complex numbers and complex-valued functions, applications of calculus to modeling vibrations and population dynamics, and an introduction to probability and information theory.



Foundations of Differential Calculus

Foundations of Differential Calculus Author Euler
ISBN-10 9780387226453
Release 2006-05-04
Pages 194
Download Link Click Here

The positive response to the publication of Blanton's English translations of Euler's "Introduction to Analysis of the Infinite" confirmed the relevance of this 240 year old work and encouraged Blanton to translate Euler's "Foundations of Differential Calculus" as well. The current book constitutes just the first 9 out of 27 chapters. The remaining chapters will be published at a later time. With this new translation, Euler's thoughts will not only be more accessible but more widely enjoyed by the mathematical community.



Problems in calculus and analyisis

Problems in calculus and analyisis Author Albert A. Blank
ISBN-10 STANFORD:36105031257905
Release 1966
Pages 264
Download Link Click Here

Problems in calculus and analyisis has been writing in one form or another for most of life. You can find so many inspiration from Problems in calculus and analyisis also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Problems in calculus and analyisis book for free.



Introduction to Calculus and Classical Analysis

Introduction to Calculus and Classical Analysis Author Omar Hijab
ISBN-10 9783319284002
Release 2016-02-09
Pages 427
Download Link Click Here

This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. This third edition includes corrections as well as some additional material. Some features of the text include: The text is completely self-contained and starts with the real number axioms; The integral is defined as the area under the graph, while the area is defined for every subset of the plane; There is a heavy emphasis on computational problems, from the high-school quadratic formula to the formula for the derivative of the zeta function at zero; There are applications from many parts of analysis, e.g., convexity, the Cantor set, continued fractions, the AGM, the theta and zeta functions, transcendental numbers, the Bessel and gamma functions, and many more; Traditionally transcendentally presented material, such as infinite products, the Bernoulli series, and the zeta functional equation, is developed over the reals; and There are 385 problems with all the solutions at the back of the text.



Advanced Calculus

Advanced Calculus Author Lynn Harold Loomis
ISBN-10 9789814583954
Release 2014-02-26
Pages 596
Download Link Click Here

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.



What is Mathematics

What is Mathematics Author Richard Courant
ISBN-10 0195105192
Release 1996
Pages 566
Download Link Click Here

A discussion of fundamental mathematical principles from algebra to elementary calculus designed to promote constructive mathematical reasoning.



Calculus On Manifolds

Calculus On Manifolds Author Michael Spivak
ISBN-10 9780429970450
Release 2018-05-04
Pages 162
Download Link Click Here

This little book is especially concerned with those portions of ?advanced calculus? in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level. The approach taken here uses elementary versions of modern methods found in sophisticated mathematics. The formal prerequisites include only a term of linear algebra, a nodding acquaintance with the notation of set theory, and a respectable first-year calculus course (one which at least mentions the least upper bound (sup) and greatest lower bound (inf) of a set of real numbers). Beyond this a certain (perhaps latent) rapport with abstract mathematics will be found almost essential.



Elementary Analysis

Elementary Analysis Author Kenneth A. Ross
ISBN-10 9781461462712
Release 2013-04-16
Pages 412
Download Link Click Here

For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.



Advanced Calculus for Engineers

Advanced Calculus for Engineers Author Francis Begnaud Hildebrand
ISBN-10 1614273987
Release 2013-02
Pages 610
Download Link Click Here

2013 Reprint of 1949 Edition. Exact facsimile of the original edition, not reproduced with Optical Recognition Software. Francis Begnaud Hildebrand (1915-2002) was an American mathematician. He was a Professor of mathematics at the Massachusetts Institute of Technology (MIT) from 1940 until 1984. Hildebrand was known for his many influential textbooks in mathematics and numerical analysis. The big green textbook from these classes (originally "Advanced Calculus for Engineers," later "Advanced Calculus for Applications") was a fixture in engineers' offices for decades.