Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Introduction to Empirical Processes and Semiparametric Inference

Introduction to Empirical Processes and Semiparametric Inference Author Michael R. Kosorok
ISBN-10 0387749780
Release 2007-12-29
Pages 483
Download Link Click Here

Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.



Introduction to Empirical Processes and Semiparametric Inference

Introduction to Empirical Processes and Semiparametric Inference Author Michael R. Kosorok
ISBN-10 1441925783
Release 2010-11-23
Pages 483
Download Link Click Here

Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.



Asymptotic Methods in Statistical Decision Theory

Asymptotic Methods in Statistical Decision Theory Author Lucien Le Cam
ISBN-10 9781461249467
Release 2012-12-06
Pages 742
Download Link Click Here

This book grew out of lectures delivered at the University of California, Berkeley, over many years. The subject is a part of asymptotics in statistics, organized around a few central ideas. The presentation proceeds from the general to the particular since this seemed the best way to emphasize the basic concepts. The reader is expected to have been exposed to statistical thinking and methodology, as expounded for instance in the book by H. Cramer [1946] or the more recent text by P. Bickel and K. Doksum [1977]. Another pos sibility, closer to the present in spirit, is Ferguson [1967]. Otherwise the reader is expected to possess some mathematical maturity, but not really a great deal of detailed mathematical knowledge. Very few mathematical objects are used; their assumed properties are simple; the results are almost always immediate consequences of the definitions. Some objects, such as vector lattices, may not have been included in the standard background of a student of statistics. For these we have provided a summary of relevant facts in the Appendix. The basic structures in the whole affair are systems that Blackwell called "experiments" and "transitions" between them. An "experiment" is a mathe matical abstraction intended to describe the basic features of an observational process if that process is contemplated in advance of its implementation. Typically, an experiment consists of a set E> of theories about what may happen in the observational process.



Weak Convergence and Empirical Processes

Weak Convergence and Empirical Processes Author A.W. van der vaart
ISBN-10 9781475725452
Release 2013-03-09
Pages 510
Download Link Click Here

This book explores weak convergence theory and empirical processes and their applications to many applications in statistics. Part one reviews stochastic convergence in its various forms. Part two offers the theory of empirical processes in a form accessible to statisticians and probabilists. Part three covers a range of topics demonstrating the applicability of the theory to key questions such as measures of goodness of fit and the bootstrap.



Unified Methods for Censored Longitudinal Data and Causality

Unified Methods for Censored Longitudinal Data and Causality Author Mark J. van der Laan
ISBN-10 9780387217000
Release 2012-11-12
Pages 399
Download Link Click Here

A fundamental statistical framework for the analysis of complex longitudinal data is provided in this book. It provides the first comprehensive description of optimal estimation techniques based on time-dependent data structures. The techniques go beyond standard statistical approaches and can be used to teach masters and Ph.D. students. The text is ideally suitable for researchers in statistics with a strong interest in the analysis of complex longitudinal data.



Asymptotic Statistics

Asymptotic Statistics Author A. W. van der Vaart
ISBN-10 0521784506
Release 2000-06-19
Pages 443
Download Link Click Here

A mathematically rigorous, practical introduction presenting standard topics plus research.



Approximation Methods in Probability Theory

Approximation Methods in Probability Theory Author Vydas Cekanavicius
ISBN-10 9783319340722
Release 2016-06-16
Pages 274
Download Link Click Here

This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.



Large Deviations for Random Graphs

Large Deviations for Random Graphs Author Sourav Chatterjee
ISBN-10 9783319658162
Release 2017-08-31
Pages 170
Download Link Click Here

This book addresses the emerging body of literature on the study of rare events in random graphs and networks. For example, what does a random graph look like if by chance it has far more triangles than expected? Until recently, probability theory offered no tools to help answer such questions. Important advances have been made in the last few years, employing tools from the newly developed theory of graph limits. This work represents the first book-length treatment of this area, while also exploring the related area of exponential random graphs. All required results from analysis, combinatorics, graph theory and classical large deviations theory are developed from scratch, making the text self-contained and doing away with the need to look up external references. Further, the book is written in a format and style that are accessible for beginning graduate students in mathematics and statistics.



Empirical Processes in M Estimation

Empirical Processes in M Estimation Author Sara A. Geer
ISBN-10 052165002X
Release 2000-01-28
Pages 286
Download Link Click Here

Advanced text; estimation methods in statistics, e.g. least squares; lots of examples; minimal abstraction.



Adaptive Treatment Strategies in Practice Planning Trials and Analyzing Data for Personalized Medicine

Adaptive Treatment Strategies in Practice  Planning Trials and Analyzing Data for Personalized Medicine Author Michael R. Kosorok
ISBN-10 9781611974188
Release 2015-12-08
Pages 348
Download Link Click Here

Personalized medicine is a medical paradigm that emphasizes systematic use of individual patient information to optimize that patient's health care, particularly in managing chronic conditions and treating cancer. In the statistical literature, sequential decision making is known as an adaptive treatment strategy (ATS) or a dynamic treatment regime (DTR). The field of DTRs emerges at the interface of statistics, machine learning, and biomedical science to provide a data-driven framework for precision medicine. The authors provide a learning-by-seeing approach to the development of ATSs, aimed at a broad audience of health researchers. All estimation procedures used are described in sufficient heuristic and technical detail so that less quantitative readers can understand the broad principles underlying the approaches. At the same time, more quantitative readers can implement these practices. This book provides the most up-to-date summary of the current state of the statistical research in personalized medicine; contains chapters by leaders in the area from both the statistics and computer sciences fields; and also contains a range of practical advice, introductory and expository materials, and case studies.



Statistical Causal Inferences and Their Applications in Public Health Research

Statistical Causal Inferences and Their Applications in Public Health Research Author Hua He
ISBN-10 9783319412597
Release 2016-12-01
Pages 321
Download Link Click Here

This book compiles and presents new developments in statistical causal inference. The accompanying data and computer programs are publicly available so readers may replicate the model development and data analysis presented in each chapter. In this way, methodology is taught so that readers may implement it directly. The book brings together experts engaged in causal inference research to present and discuss recent issues in causal inference methodological development. This is also a timely look at causal inference applied to scenarios that range from clinical trials to mediation and public health research more broadly. In an academic setting, this book will serve as a reference and guide to a course in causal inference at the graduate level (Master's or Doctorate). It is particularly relevant for students pursuing degrees in statistics, biostatistics, and computational biology. Researchers and data analysts in public health and biomedical research will also find this book to be an important reference.



Statistical Inference for Financial Engineering

Statistical Inference for Financial Engineering Author Masanobu Taniguchi
ISBN-10 9783319034973
Release 2014-03-26
Pages 118
Download Link Click Here

​This monograph provides the fundamentals of statistical inference for financial engineering and covers some selected methods suitable for analyzing financial time series data. In order to describe the actual financial data, various stochastic processes, e.g. non-Gaussian linear processes, non-linear processes, long-memory processes, locally stationary processes etc. are introduced and their optimal estimation is considered as well. This book also includes several statistical approaches, e.g., discriminant analysis, the empirical likelihood method, control variate method, quantile regression, realized volatility etc., which have been recently developed and are considered to be powerful tools for analyzing the financial data, establishing a new bridge between time series and financial engineering. This book is well suited as a professional reference book on finance, statistics and statistical financial engineering. Readers are expected to have an undergraduate-level knowledge of statistics.



Biased Sampling Over identified Parameter Problems and Beyond

Biased Sampling  Over identified Parameter Problems and Beyond Author Jing Qin
ISBN-10 9789811048562
Release 2017-06-19
Pages 624
Download Link Click Here

This book is devoted to biased sampling problems (also called choice-based sampling in Econometrics parlance) and over-identified parameter estimation problems. Biased sampling problems appear in many areas of research, including Medicine, Epidemiology and Public Health, the Social Sciences and Economics. The book addresses a range of important topics, including case and control studies, causal inference, missing data problems, meta-analysis, renewal process and length biased sampling problems, capture and recapture problems, case cohort studies, exponential tilting genetic mixture models etc. The goal of this book is to make it easier for Ph. D students and new researchers to get started in this research area. It will be of interest to all those who work in the health, biological, social and physical sciences, as well as those who are interested in survey methodology and other areas of statistical science, among others.



Nonlinear Time Series

Nonlinear Time Series Author Jianqing Fan
ISBN-10 0387693955
Release 2008-09-11
Pages 552
Download Link Click Here

This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.



Stable Convergence and Stable Limit Theorems

Stable Convergence and Stable Limit Theorems Author Erich Häusler
ISBN-10 9783319183299
Release 2015-06-09
Pages 228
Download Link Click Here

The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level with a solid knowledge of measure theoretic probability.



Long Memory Processes

Long Memory Processes Author Jan Beran
ISBN-10 9783642355127
Release 2013-05-14
Pages 884
Download Link Click Here

Long-memory processes are known to play an important part in many areas of science and technology, including physics, geophysics, hydrology, telecommunications, economics, finance, climatology, and network engineering. In the last 20 years enormous progress has been made in understanding the probabilistic foundations and statistical principles of such processes. This book provides a timely and comprehensive review, including a thorough discussion of mathematical and probabilistic foundations and statistical methods, emphasizing their practical motivation and mathematical justification. Proofs of the main theorems are provided and data examples illustrate practical aspects. This book will be a valuable resource for researchers and graduate students in statistics, mathematics, econometrics and other quantitative areas, as well as for practitioners and applied researchers who need to analyze data in which long memory, power laws, self-similar scaling or fractal properties are relevant.



Dirichlet Forms Methods for Poisson Point Measures and L vy Processes

Dirichlet Forms Methods for Poisson Point Measures and L  vy Processes Author Nicolas Bouleau
ISBN-10 9783319258201
Release 2016-01-08
Pages 323
Download Link Click Here

A simplified approach to Malliavin calculus adapted to Poisson random measures is developed and applied in this book. Called the “lent particle method” it is based on perturbation of the position of particles. Poisson random measures describe phenomena involving random jumps (for instance in mathematical finance) or the random distribution of particles (as in statistical physics). Thanks to the theory of Dirichlet forms, the authors develop a mathematical tool for a quite general class of random Poisson measures and significantly simplify computations of Malliavin matrices of Poisson functionals. The method gives rise to a new explicit calculus that they illustrate on various examples: it consists in adding a particle and then removing it after computing the gradient. Using this method, one can establish absolute continuity of Poisson functionals such as Lévy areas, solutions of SDEs driven by Poisson measure and, by iteration, obtain regularity of laws. The authors also give applications to error calculus theory. This book will be of interest to researchers and graduate students in the fields of stochastic analysis and finance, and in the domain of statistical physics. Professors preparing courses on these topics will also find it useful. The prerequisite is a knowledge of probability theory.